Neural correlates of olfactory working memory in the human brain.

IF 4.7 2区 医学 Q1 NEUROIMAGING
Zhuofeng Li, Shu-Bin Li, Shaozhen Tan, Lu-Lu Liu, Chao Yan, Lai-Quan Zou
{"title":"Neural correlates of olfactory working memory in the human brain.","authors":"Zhuofeng Li, Shu-Bin Li, Shaozhen Tan, Lu-Lu Liu, Chao Yan, Lai-Quan Zou","doi":"10.1016/j.neuroimage.2025.121005","DOIUrl":null,"url":null,"abstract":"<p><p>Previous research has revealed that the insula, pallidum, thalamus, hippocampus, middle frontal gyrus, and supplementary motor area are activated during odor memory and that the performance of olfactory working memory is affected by the verbalization of odors. However, the neural mechanisms underlying olfactory working memory and the role of verbalization in olfactory working memory are not fully understood. Twenty-nine participants were enrolled in a study to complete olfactory and visual n-back tasks using high- and low-verbalizability stimuli while undergoing fMRI imaging. The behavioral results showed that the participants achieved greater accuracy in the visual rather than olfactory n-back task. We observed increased activation in the precentral gyrus, superior frontal gyrus, middle frontal gyrus, supplementary motor area, and inferior parietal gyrus during olfactory working memory. Interestingly, decreased activation was observed in the olfactory 2-back task versus the 0-back task. Moreover, the left angular gyrus and inferior parietal gyrus were more strongly activated during processing of olfactory working memory using high-verbalizability odors. In conclusion, olfactory working memory engages cross-modal regions to facilitate responses, is involved in the monitoring and manipulation of information during working memory, and boasts a unique activation pattern that is different from that of visual working memory. Semantic information supports the representation of odor information in the working memory system.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121005"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2025.121005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Previous research has revealed that the insula, pallidum, thalamus, hippocampus, middle frontal gyrus, and supplementary motor area are activated during odor memory and that the performance of olfactory working memory is affected by the verbalization of odors. However, the neural mechanisms underlying olfactory working memory and the role of verbalization in olfactory working memory are not fully understood. Twenty-nine participants were enrolled in a study to complete olfactory and visual n-back tasks using high- and low-verbalizability stimuli while undergoing fMRI imaging. The behavioral results showed that the participants achieved greater accuracy in the visual rather than olfactory n-back task. We observed increased activation in the precentral gyrus, superior frontal gyrus, middle frontal gyrus, supplementary motor area, and inferior parietal gyrus during olfactory working memory. Interestingly, decreased activation was observed in the olfactory 2-back task versus the 0-back task. Moreover, the left angular gyrus and inferior parietal gyrus were more strongly activated during processing of olfactory working memory using high-verbalizability odors. In conclusion, olfactory working memory engages cross-modal regions to facilitate responses, is involved in the monitoring and manipulation of information during working memory, and boasts a unique activation pattern that is different from that of visual working memory. Semantic information supports the representation of odor information in the working memory system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信