Sustainable Valorization of Rice Straw into Biochar and Carbon Dots Using a Novel One-Pot Approach for Dual Applications in Detection and Removal of Lead Ions.
{"title":"Sustainable Valorization of Rice Straw into Biochar and Carbon Dots Using a Novel One-Pot Approach for Dual Applications in Detection and Removal of Lead Ions.","authors":"Jagpreet Singh, Monika Bhattu, Meenakshi Verma, Mikhael Bechelany, Satinder Kaur Brar, Rajendrasinh Jadeja","doi":"10.3390/nano15010066","DOIUrl":null,"url":null,"abstract":"<p><p>Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb<sup>2+</sup> ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs). In this regard, the present work focused on the preparation of two efficient materials, i.e., biochar (R-BC) and carbon dots (R-CDs) from a single resource (rice straw), via a novel approach by using extraction and hydrothermal process. The various microscopic and spectroscopy techniques confirmed the formation of porous structure and spherical morphology of R-BC and R-CDs, respectively. FTIR analysis confirmed the presence of hydroxyl (-OH), carboxyl (-COO) and amine (N-H) groups on the R-CDs' surface. The obtained blue luminescent R-CDs were employed as chemosensors for the detection of Pb<sup>2+</sup> ions. The sensor exhibited a strong linear correlation over a concentration range of 1 µM to 100 µM, with a limit of detection (LOD) of 0.11 µM. Furthermore, the BET analysis of R-BC indicated a surface area of 1.71 m<sup>2</sup>/g and a monolayer volume of 0.0081 cm<sup>3</sup>/g, supporting its adsorption potential for Pb<sup>2+</sup>. The R-BC showed excellent removal efficiency of 77.61%. The adsorption process followed the Langmuir isotherm model and second-order kinetics. Therefore, the dual use of rice straw-derived provides a cost-effective, environmentally friendly solution for Pb<sup>2+</sup> detection and remediation to accomplish the SDGs.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723382/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010066","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb2+ ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs). In this regard, the present work focused on the preparation of two efficient materials, i.e., biochar (R-BC) and carbon dots (R-CDs) from a single resource (rice straw), via a novel approach by using extraction and hydrothermal process. The various microscopic and spectroscopy techniques confirmed the formation of porous structure and spherical morphology of R-BC and R-CDs, respectively. FTIR analysis confirmed the presence of hydroxyl (-OH), carboxyl (-COO) and amine (N-H) groups on the R-CDs' surface. The obtained blue luminescent R-CDs were employed as chemosensors for the detection of Pb2+ ions. The sensor exhibited a strong linear correlation over a concentration range of 1 µM to 100 µM, with a limit of detection (LOD) of 0.11 µM. Furthermore, the BET analysis of R-BC indicated a surface area of 1.71 m2/g and a monolayer volume of 0.0081 cm3/g, supporting its adsorption potential for Pb2+. The R-BC showed excellent removal efficiency of 77.61%. The adsorption process followed the Langmuir isotherm model and second-order kinetics. Therefore, the dual use of rice straw-derived provides a cost-effective, environmentally friendly solution for Pb2+ detection and remediation to accomplish the SDGs.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.