Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-01-05 DOI:10.3390/nano15010071
Huiping Liu, Mingkun Xiao, Jiannan Hao, Xinjie Ma, Ni Jiang, Qing Peng, Chao Ye
{"title":"Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel.","authors":"Huiping Liu, Mingkun Xiao, Jiannan Hao, Xinjie Ma, Ni Jiang, Qing Peng, Chao Ye","doi":"10.3390/nano15010071","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous and interrupted low cycle fatigue tests were conducted on nuclear-grade S30408 stainless steel under different stress conditions at room temperature. Vickers hardness testing and microstructure characterization were performed on the fatigue samples with different fatigue states. The evolutionary mechanism of the microstructure defects in materials under fatigue cyclic loading was discussed. The traditional Basquin formula was used to predict the fatigue life of these fatigue samples. At the same time, a quantitative mechanical model related to the characteristic micro-defects parameter KAM and the Vickers hardness (H<sub>v</sub>) was established for the S30408 stainless steel during the low cycle fatigue damage process, and the prediction accuracy of the Vickers hardness is greater than 90%, which is significant and useful for the fatigue life prediction of the 304 stainless steels used in nuclear systems and the safe operation of the reactors.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722923/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010071","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous and interrupted low cycle fatigue tests were conducted on nuclear-grade S30408 stainless steel under different stress conditions at room temperature. Vickers hardness testing and microstructure characterization were performed on the fatigue samples with different fatigue states. The evolutionary mechanism of the microstructure defects in materials under fatigue cyclic loading was discussed. The traditional Basquin formula was used to predict the fatigue life of these fatigue samples. At the same time, a quantitative mechanical model related to the characteristic micro-defects parameter KAM and the Vickers hardness (Hv) was established for the S30408 stainless steel during the low cycle fatigue damage process, and the prediction accuracy of the Vickers hardness is greater than 90%, which is significant and useful for the fatigue life prediction of the 304 stainless steels used in nuclear systems and the safe operation of the reactors.

核级S30408不锈钢微缺陷低周疲劳力学模型
对核级S30408不锈钢在室温不同应力条件下进行了连续和间断低周疲劳试验。对不同疲劳状态下的疲劳试样进行了维氏硬度测试和显微组织表征。探讨了疲劳循环载荷作用下材料微观组织缺陷的演化机制。采用传统的Basquin公式对疲劳试样进行疲劳寿命预测。同时,建立了S30408不锈钢低周疲劳损伤过程中特征微缺陷参数KAM与维氏硬度(Hv)相关的定量力学模型,其维氏硬度预测精度大于90%,对核系统用304不锈钢疲劳寿命预测和反应堆安全运行具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信