{"title":"Synthesis of three-dimensional covalent organic frameworks through a symmetry reduction strategy.","authors":"Jianhong Chang, Zeyue Zhang, Haorui Zheng, Hui Li, Jinquan Suo, Chunqing Ji, Fenqian Chen, Shipeng Zhang, Zitao Wang, Valentin Valtchev, Shilun Qiu, Junliang Sun, Qianrong Fang","doi":"10.1038/s41557-024-01715-6","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) covalent organic frameworks (COFs) hold significant promise for a variety of applications. However, conventional design approaches using regular building blocks limit the structural diversity of 3D COFs. Here we design and synthesize two 3D COFs, designated as JUC-644 and JUC-645, through a methodology that relies on using eight-connected building blocks with reduced symmetry. Their structures are solved using continuous rotation electron diffraction and high-resolution transmission electron microscopy, which reveal a unique linkage with a double chain structure, a rare phenomenon in COFs. We deconstruct these structures into [4 + 3(+ 2)]-c nets, which leads to six different topologies. Furthermore, JUC-644 demonstrates high adsorption capacity for C<sub>3</sub>H<sub>8</sub> and n-C<sub>4</sub>H<sub>10</sub> (11.28 and 10.45 mmol g<sup>-1</sup> at 298 K and 1 bar, respectively), surpassing most known porous materials, with notable selectivity for C<sub>3</sub>H<sub>8</sub>/C<sub>2</sub>H<sub>6</sub> and n-C<sub>4</sub>H<sub>10</sub>/C<sub>2</sub>H<sub>6</sub>. This approach opens avenues for designing intricate architectures and shows the potential of COFs in C<sub>2</sub>H<sub>6</sub> recovery from natural gas liquids.</p>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":" ","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01715-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) covalent organic frameworks (COFs) hold significant promise for a variety of applications. However, conventional design approaches using regular building blocks limit the structural diversity of 3D COFs. Here we design and synthesize two 3D COFs, designated as JUC-644 and JUC-645, through a methodology that relies on using eight-connected building blocks with reduced symmetry. Their structures are solved using continuous rotation electron diffraction and high-resolution transmission electron microscopy, which reveal a unique linkage with a double chain structure, a rare phenomenon in COFs. We deconstruct these structures into [4 + 3(+ 2)]-c nets, which leads to six different topologies. Furthermore, JUC-644 demonstrates high adsorption capacity for C3H8 and n-C4H10 (11.28 and 10.45 mmol g-1 at 298 K and 1 bar, respectively), surpassing most known porous materials, with notable selectivity for C3H8/C2H6 and n-C4H10/C2H6. This approach opens avenues for designing intricate architectures and shows the potential of COFs in C2H6 recovery from natural gas liquids.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.