Pengbin Li, Wenjuan Tang, Haiyan Wen, Siqi Zhou, Hui Cao
{"title":"Senkyunolide I prevent chondrocytes from oxidative stress through Nrf2/HO-1 signaling pathway.","authors":"Pengbin Li, Wenjuan Tang, Haiyan Wen, Siqi Zhou, Hui Cao","doi":"10.1007/s00210-024-03776-3","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a degenerative musculoskeletal disease, featured by the destruction of articular cartilage. Oxidative stress, one of the drivers of the extracellular matrix degradation in cartilage, plays a vital role in OA pathogenesis. Senkyunolide I (SEI) is a natural compound with a prominent anti-oxidative stress property against multiple diseases. However, the protective effect of SEI on OA has not been explored. Here, we aimed to elucidate the effect of SEI on OA in vitro. Our results showed that SEI suppressed the expression of senescence-related markers such as P16 and P21 in IL-1β-induced chondrocytes. Besides, SEI alleviated IL-1β-induced the degradation of extracellular matrix (ECM) by suppressing the matrix proteinase like MMP13 and ATAMDS5 while promoting matrix synthesis regulated biomarkers like COL2A1 and ACAN in chondrocytes. Mechanically, the mitochondrial dysfunction and overproduction of intracellular reactive oxygen species (ROS) in chondrocytes induced by IL-1β were reversed by SEI. Additionally, the ROS inhibitor N-acetylcysteine (NAC) synergistically enhanced the biological effect of SEI in IL-1β-induced chondrocytes. Moreover, it was also found that the expression of Nrf2 and HO-1 was increased by the treatment of SEI in IL-1β-stimulated chondrocytes, while the Nrf2 inhibitor ML385 reversed the protective effect of SEI on OA chondrocytes. In conclusion, SEI could inhibit senescence, the degradation of ECM, and the production of ROS through activating Nrf2/ HO-1 signaling pathway, which provide a novel candidate for OA treatment.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03776-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA) is a degenerative musculoskeletal disease, featured by the destruction of articular cartilage. Oxidative stress, one of the drivers of the extracellular matrix degradation in cartilage, plays a vital role in OA pathogenesis. Senkyunolide I (SEI) is a natural compound with a prominent anti-oxidative stress property against multiple diseases. However, the protective effect of SEI on OA has not been explored. Here, we aimed to elucidate the effect of SEI on OA in vitro. Our results showed that SEI suppressed the expression of senescence-related markers such as P16 and P21 in IL-1β-induced chondrocytes. Besides, SEI alleviated IL-1β-induced the degradation of extracellular matrix (ECM) by suppressing the matrix proteinase like MMP13 and ATAMDS5 while promoting matrix synthesis regulated biomarkers like COL2A1 and ACAN in chondrocytes. Mechanically, the mitochondrial dysfunction and overproduction of intracellular reactive oxygen species (ROS) in chondrocytes induced by IL-1β were reversed by SEI. Additionally, the ROS inhibitor N-acetylcysteine (NAC) synergistically enhanced the biological effect of SEI in IL-1β-induced chondrocytes. Moreover, it was also found that the expression of Nrf2 and HO-1 was increased by the treatment of SEI in IL-1β-stimulated chondrocytes, while the Nrf2 inhibitor ML385 reversed the protective effect of SEI on OA chondrocytes. In conclusion, SEI could inhibit senescence, the degradation of ECM, and the production of ROS through activating Nrf2/ HO-1 signaling pathway, which provide a novel candidate for OA treatment.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.