Intestinal Barrier Damage and Growth Retardation Caused by Exposure to Polystyrene Nanoplastics Through Lactation Milk in Developing Mice.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-01-04 DOI:10.3390/nano15010069
Chaoyu Zhou, Haiyan Wu, Lei Zhang, Xiao Xiao, Xiaodan Wang, Mingju Li, Runqiu Cai, Jia You, Qi Chen, Yifei Yang, Xinyuan Tian, Qianyu Bai, Yinzhu Chen, Huihui Bao, Tianlong Liu
{"title":"Intestinal Barrier Damage and Growth Retardation Caused by Exposure to Polystyrene Nanoplastics Through Lactation Milk in Developing Mice.","authors":"Chaoyu Zhou, Haiyan Wu, Lei Zhang, Xiao Xiao, Xiaodan Wang, Mingju Li, Runqiu Cai, Jia You, Qi Chen, Yifei Yang, Xinyuan Tian, Qianyu Bai, Yinzhu Chen, Huihui Bao, Tianlong Liu","doi":"10.3390/nano15010069","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics, defined as plastic fragments smaller than 5 mm, degrade from larger pollutants, with nanoscale microplastic particles presenting significant biological interactions. This study investigates the toxic effects of polystyrene nanoplastics (PS-NPs) on juvenile mice, which were exposed through lactation milk and drinking water at concentrations of 0.01 mg/mL, 0.1 mg/mL, and 1 mg/mL. The results show that PS-NP exposure during lactation and juvenile periods caused delayed weight gain and impaired organ development, particularly in the liver and kidneys, without causing functional abnormalities or toxic injuries. The primary toxicity of PS-NPs was observed in the intestinal tract, including shortened villi, disrupted tight junctions, inhibited epithelial cell proliferation, and oxidative stress responses. These findings highlight the importance of evaluating the developmental toxicity of nanoplastics at environmentally relevant doses.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722969/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010069","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics, defined as plastic fragments smaller than 5 mm, degrade from larger pollutants, with nanoscale microplastic particles presenting significant biological interactions. This study investigates the toxic effects of polystyrene nanoplastics (PS-NPs) on juvenile mice, which were exposed through lactation milk and drinking water at concentrations of 0.01 mg/mL, 0.1 mg/mL, and 1 mg/mL. The results show that PS-NP exposure during lactation and juvenile periods caused delayed weight gain and impaired organ development, particularly in the liver and kidneys, without causing functional abnormalities or toxic injuries. The primary toxicity of PS-NPs was observed in the intestinal tract, including shortened villi, disrupted tight junctions, inhibited epithelial cell proliferation, and oxidative stress responses. These findings highlight the importance of evaluating the developmental toxicity of nanoplastics at environmentally relevant doses.

通过乳汁接触聚苯乙烯纳米塑料对发育中小鼠肠道屏障损伤和生长迟缓的影响。
微塑料,定义为小于5毫米的塑料碎片,可从较大的污染物中降解,纳米级微塑料颗粒表现出显著的生物相互作用。本研究研究了聚苯乙烯纳米塑料(PS-NPs)对幼鼠的毒性作用,分别通过0.01 mg/mL、0.1 mg/mL和1 mg/mL的乳汁和饮用水接触聚苯乙烯纳米塑料。结果表明,在哺乳期和幼年期暴露PS-NP会导致体重增加延迟和器官发育受损,尤其是肝脏和肾脏,但不会造成功能异常或毒性损伤。在肠道中观察到PS-NPs的主要毒性,包括缩短绒毛,破坏紧密连接,抑制上皮细胞增殖和氧化应激反应。这些发现强调了评估纳米塑料在环境相关剂量下的发育毒性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信