Close cooperation between Semi1 and Semi2 proteins is essential for pronuclear positioning in Tetrahymena thermophila.

IF 3.1 3区 生物学 Q3 CELL BIOLOGY
Takahiko Akematsu, Josef Loidl, Yasuhiro Fukuda, Masaaki Iwamoto
{"title":"Close cooperation between Semi1 and Semi2 proteins is essential for pronuclear positioning in <i>Tetrahymena thermophila</i>.","authors":"Takahiko Akematsu, Josef Loidl, Yasuhiro Fukuda, Masaaki Iwamoto","doi":"10.1091/mbc.E24-11-0503","DOIUrl":null,"url":null,"abstract":"<p><p>During sexual reproduction in the ciliate <i>Tetrahymena thermophila</i>, meiosis occurs in the germline micronucleus, resulting in the formation of four haploid micronuclei. Of these, only one is selected to evade autophagy, and subsequently migrates to the membrane junction with the partner cell for reciprocal pronuclear exchange. We previously demonstrated that the transmembrane protein Semi1 is essential for this nuclear migration. Semi1 is specifically expressed in mating cells and localizes to the periphery of the selected nucleus. Loss of Semi1 disrupts nuclear attachment to the junction, leading to infertility. However, the mechanism by which Semi1 positions the nucleus at the junction remains unclear. Here, we report that the Semi1-interacting protein, Semi2, is also necessary for proper nuclear positioning. Deletion of Semi2 results in the same nuclear mislocalization phenotype and infertility observed in Semi1 mutant cells. Semi2 colocalizes with Semi1, but in the absence of Semi1, Semi2 fails to exhibit perinuclear localization. The selected nucleus anchors to microtubules prior to migration, a process dependent on both Semi1 and Semi2. We propose a model in which Semi1 recruits Semi2 to the selected nucleus, facilitating the interaction between the nucleus and microtubules required for proper nuclear positioning at the membrane junction.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"mbcE24110503"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-11-0503","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During sexual reproduction in the ciliate Tetrahymena thermophila, meiosis occurs in the germline micronucleus, resulting in the formation of four haploid micronuclei. Of these, only one is selected to evade autophagy, and subsequently migrates to the membrane junction with the partner cell for reciprocal pronuclear exchange. We previously demonstrated that the transmembrane protein Semi1 is essential for this nuclear migration. Semi1 is specifically expressed in mating cells and localizes to the periphery of the selected nucleus. Loss of Semi1 disrupts nuclear attachment to the junction, leading to infertility. However, the mechanism by which Semi1 positions the nucleus at the junction remains unclear. Here, we report that the Semi1-interacting protein, Semi2, is also necessary for proper nuclear positioning. Deletion of Semi2 results in the same nuclear mislocalization phenotype and infertility observed in Semi1 mutant cells. Semi2 colocalizes with Semi1, but in the absence of Semi1, Semi2 fails to exhibit perinuclear localization. The selected nucleus anchors to microtubules prior to migration, a process dependent on both Semi1 and Semi2. We propose a model in which Semi1 recruits Semi2 to the selected nucleus, facilitating the interaction between the nucleus and microtubules required for proper nuclear positioning at the membrane junction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信