The Degradation Characteristics and Soil Remediation Capabilities of the Butachlor-Degrading Strain DC-1.

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Yue Cheng, Qian Fu, Guixin Xiong, Yaning Huang, Xu Li, Qingyue Yu, Fuxia He, Haitao Li, Rongmei Liu
{"title":"The Degradation Characteristics and Soil Remediation Capabilities of the Butachlor-Degrading Strain DC-1.","authors":"Yue Cheng, Qian Fu, Guixin Xiong, Yaning Huang, Xu Li, Qingyue Yu, Fuxia He, Haitao Li, Rongmei Liu","doi":"10.3390/microorganisms12122568","DOIUrl":null,"url":null,"abstract":"<p><p>Butachlor is a widely utilized acetamide herbicide noted for its systemic selectivity against pre-emergence grass weeds. Butachlor has negative effects on organisms and the environment, so it is necessary to screen degradation strains. In this investigation, <i>Bacillus cereus</i> strain DC-1 was isolated from soil persistently exposed to butachlor. Through rigorous single-factor and response surface analyses, strain DC-1 exhibited a notable 87.06% degradation efficiency under optimized conditions where the temperature was 32.89 °C, pH was 7.29, and inoculum concentration was 5.18%. It was further hypothesized by LC-MS that the degradation pathway of butachlor by strain DC-1 might be as follows: butachlor undergoes initial deoxygenation catalyzed by dioxygenases to form 2-chloro-N-(2,6-diethylphenyl)-N-methylacetamide, followed by N-demethylation yielding 2-chloro-N-(2,6-diethylphenyl) acetamide, and culminating in conversion to 2,6-diethylphenol. In addition, bioremediation experiments of butachlor-contaminated soil were conducted. The results show that strain DC-1 could degradable 99.23% of butachlor (100 mg·kg<sup>-1</sup>) from the soil within 12 d, and soil sucrase, cellulase, and urease activities are promoted by the bacteria. And through high-throughput sequencing, it was concluded that the strain DC-1 was able to influence the relative abundance of certain bacteria in the soil, and make the microbial community in the soil develop in a more stable and beneficial direction. DC-1 thus represents a valuable resource in the realm of butachlor degradation due to its robust efficacy, favorable characteristics, and ecological restorative capabilities, underscoring its promising role in the bioremediation of butachlor-contaminated soils.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"12 12","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677828/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms12122568","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Butachlor is a widely utilized acetamide herbicide noted for its systemic selectivity against pre-emergence grass weeds. Butachlor has negative effects on organisms and the environment, so it is necessary to screen degradation strains. In this investigation, Bacillus cereus strain DC-1 was isolated from soil persistently exposed to butachlor. Through rigorous single-factor and response surface analyses, strain DC-1 exhibited a notable 87.06% degradation efficiency under optimized conditions where the temperature was 32.89 °C, pH was 7.29, and inoculum concentration was 5.18%. It was further hypothesized by LC-MS that the degradation pathway of butachlor by strain DC-1 might be as follows: butachlor undergoes initial deoxygenation catalyzed by dioxygenases to form 2-chloro-N-(2,6-diethylphenyl)-N-methylacetamide, followed by N-demethylation yielding 2-chloro-N-(2,6-diethylphenyl) acetamide, and culminating in conversion to 2,6-diethylphenol. In addition, bioremediation experiments of butachlor-contaminated soil were conducted. The results show that strain DC-1 could degradable 99.23% of butachlor (100 mg·kg-1) from the soil within 12 d, and soil sucrase, cellulase, and urease activities are promoted by the bacteria. And through high-throughput sequencing, it was concluded that the strain DC-1 was able to influence the relative abundance of certain bacteria in the soil, and make the microbial community in the soil develop in a more stable and beneficial direction. DC-1 thus represents a valuable resource in the realm of butachlor degradation due to its robust efficacy, favorable characteristics, and ecological restorative capabilities, underscoring its promising role in the bioremediation of butachlor-contaminated soils.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信