Marianna Ciccone, Muhammad Rehan Khan, Junior Bernardo Molina Hernandez, Joel Armando Njieukam, Lorenzo Siroli, Davide Gottardi, Rosalba Lanciotti, Pietro Rocculi, Francesca Patrignani
{"title":"Release of Biopolymers from <i>Saccharomyces cerevisiae</i> Biomass Through Thermal and Non-Thermal Technologies.","authors":"Marianna Ciccone, Muhammad Rehan Khan, Junior Bernardo Molina Hernandez, Joel Armando Njieukam, Lorenzo Siroli, Davide Gottardi, Rosalba Lanciotti, Pietro Rocculi, Francesca Patrignani","doi":"10.3390/microorganisms12122596","DOIUrl":null,"url":null,"abstract":"<p><p>Components of yeast cell walls, such as β-glucans and mannoproteins, show promise for developing sustainable biopolymers for food packaging. Efficient extraction, however, is challenging due to the complexity of the yeast cell wall. This study explored high-pressure homogenisation (HPH) and pulsed electric fields (PEFs), alone and with heat treatment (TT), on bakery yeast (BY) and brewery spent yeast (BSY) biomasses. In the treated samples we assessed carbohydrates, proteins, β-glucans, and mannoproteins and evaluated cell wall disruption microscopically. HPH caused complete cell disintegration, enhancing intracellular release, while PEF primarily permeabilised the membranes. Combined HPH and PEF treatments significantly increased cell wall stress, leading to partial disintegration. Notably, the β-glucans released reached 3.90 g/100 g dry matter in BY and 10.44 g/100 g dry matter in BSY, demonstrating significant extraction improvements. These findings highlight the potential of HPH and PEF for enhancing β-glucan recovery from yeast biomass, offering a promising route for sustainable biopolymer production for food packaging.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"12 12","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms12122596","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Components of yeast cell walls, such as β-glucans and mannoproteins, show promise for developing sustainable biopolymers for food packaging. Efficient extraction, however, is challenging due to the complexity of the yeast cell wall. This study explored high-pressure homogenisation (HPH) and pulsed electric fields (PEFs), alone and with heat treatment (TT), on bakery yeast (BY) and brewery spent yeast (BSY) biomasses. In the treated samples we assessed carbohydrates, proteins, β-glucans, and mannoproteins and evaluated cell wall disruption microscopically. HPH caused complete cell disintegration, enhancing intracellular release, while PEF primarily permeabilised the membranes. Combined HPH and PEF treatments significantly increased cell wall stress, leading to partial disintegration. Notably, the β-glucans released reached 3.90 g/100 g dry matter in BY and 10.44 g/100 g dry matter in BSY, demonstrating significant extraction improvements. These findings highlight the potential of HPH and PEF for enhancing β-glucan recovery from yeast biomass, offering a promising route for sustainable biopolymer production for food packaging.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.