Mercury-Resistant Bacteria Isolated from an Estuarine Ecosystem with Detoxification Potential.

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Marynes Quintero, Sol D Zuluaga-Valencia, Lady Giselle Ríos-López, Olga Sánchez, Cesar A Bernal, Niza Sepúlveda, Javier Gómez-León
{"title":"Mercury-Resistant Bacteria Isolated from an Estuarine Ecosystem with Detoxification Potential.","authors":"Marynes Quintero, Sol D Zuluaga-Valencia, Lady Giselle Ríos-López, Olga Sánchez, Cesar A Bernal, Niza Sepúlveda, Javier Gómez-León","doi":"10.3390/microorganisms12122631","DOIUrl":null,"url":null,"abstract":"<p><p>Mercury pollution is a significant environmental issue, primarily resulting from industrial activities, including gold mining extraction. In this study, 333 microorganisms were tested in increasing mercury concentrations, where 158 bacteria and 14 fungi were able to grow and remain viable at concentrations over 5.0 mg/L of mercuric chloride (II). One of the bacterial strains, <i>Stenotrophomonas</i> sp. INV PRT0231, isolated from the mouth of the San Juan River in the Chocó region in Colombia, showed a high mercury resistance level (MIC<sub>90</sub> of 27 ± 9 mg/L), with a removal rate of 86.9%, an absorption rate of 1.2%, and a volatilization rate of 85.7% at pH 6.0 and 30.0 °C. The FTIR analysis showed changes in the functional groups, including fatty acid chains and methyl groups, proteins, and lipopolysaccharides associated with the carboxylate group (COO<sup>-</sup>), suggesting an important role of these biomolecules and their associated functional groups as mechanisms employed by the bacterium for mercury detoxification. Our study contributes to the understanding of the mechanisms of mercury biotransformation in microbial environmental isolates to help develop bioremediation strategies to mitigate mercury pollution caused by anthropogenic activities.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"12 12","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676337/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms12122631","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mercury pollution is a significant environmental issue, primarily resulting from industrial activities, including gold mining extraction. In this study, 333 microorganisms were tested in increasing mercury concentrations, where 158 bacteria and 14 fungi were able to grow and remain viable at concentrations over 5.0 mg/L of mercuric chloride (II). One of the bacterial strains, Stenotrophomonas sp. INV PRT0231, isolated from the mouth of the San Juan River in the Chocó region in Colombia, showed a high mercury resistance level (MIC90 of 27 ± 9 mg/L), with a removal rate of 86.9%, an absorption rate of 1.2%, and a volatilization rate of 85.7% at pH 6.0 and 30.0 °C. The FTIR analysis showed changes in the functional groups, including fatty acid chains and methyl groups, proteins, and lipopolysaccharides associated with the carboxylate group (COO-), suggesting an important role of these biomolecules and their associated functional groups as mechanisms employed by the bacterium for mercury detoxification. Our study contributes to the understanding of the mechanisms of mercury biotransformation in microbial environmental isolates to help develop bioremediation strategies to mitigate mercury pollution caused by anthropogenic activities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信