Konrad Kaminiów, Martyna Kiołbasa, Maciej Pastuszczak
{"title":"The Significance of the Cell-Mediated Host Immune Response in Syphilis.","authors":"Konrad Kaminiów, Martyna Kiołbasa, Maciej Pastuszczak","doi":"10.3390/microorganisms12122580","DOIUrl":null,"url":null,"abstract":"<p><p>Syphilis, caused by the highly invasive pathogen <i>Treponema pallidum</i>, remains one of the oldest and most significant public health challenges. According to the World Health Organization (WHO), the number of new syphilis cases among adults aged 15-49 years in 2022 was estimated at approximately 8 million, with notable increases observed in Europe, the Americas, and Africa. The cellular immune response plays a critical role in combating this infection, and its insufficient activity may contribute to chronic progression of the disease. <i>T. pallidum</i> effectively evades the host immune response, enabling its prolonged survival within the host and increasing the risk of late complications such as neurosyphilis and cardiovascular syphilis. This review article discusses the mechanisms of cellular immune responses in <i>T. pallidum</i> infection, including T lymphocyte activation, proinflammatory cytokine production, and the roles of macrophages and dendritic cells in pathogen recognition and elimination. Additionally, it examines the immune evasion strategies employed by <i>T. pallidum</i>, such as the low immunogenicity of its antigens and its ability to suppress the activation of effector cells. A comprehensive understanding of the current knowledge regarding cellular immune mechanisms may contribute to the development of more effective diagnostic and therapeutic approaches in syphilis management.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"12 12","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677580/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms12122580","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Syphilis, caused by the highly invasive pathogen Treponema pallidum, remains one of the oldest and most significant public health challenges. According to the World Health Organization (WHO), the number of new syphilis cases among adults aged 15-49 years in 2022 was estimated at approximately 8 million, with notable increases observed in Europe, the Americas, and Africa. The cellular immune response plays a critical role in combating this infection, and its insufficient activity may contribute to chronic progression of the disease. T. pallidum effectively evades the host immune response, enabling its prolonged survival within the host and increasing the risk of late complications such as neurosyphilis and cardiovascular syphilis. This review article discusses the mechanisms of cellular immune responses in T. pallidum infection, including T lymphocyte activation, proinflammatory cytokine production, and the roles of macrophages and dendritic cells in pathogen recognition and elimination. Additionally, it examines the immune evasion strategies employed by T. pallidum, such as the low immunogenicity of its antigens and its ability to suppress the activation of effector cells. A comprehensive understanding of the current knowledge regarding cellular immune mechanisms may contribute to the development of more effective diagnostic and therapeutic approaches in syphilis management.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.