{"title":"Effects of Distiller's Grains Biochar and <i>Lactobacillus plantarum</i> on the Remediation of Cd-Pb-Zn-Contaminated Soil and Growth of Sorghum-Sudangrass.","authors":"Guangxu Zhu, Yufeng Li, Dandan Cheng, Rongkun Chen, Yunyan Wang, Qiang Tu","doi":"10.3390/microorganisms12122592","DOIUrl":null,"url":null,"abstract":"<p><p>Soil contamination with heavy metals is a significant environmental issue that adversely affects plant growth and agricultural productivity. Biochar and microbial inoculants have emerged as a promising approach to solving this problem, and previous studies have focused more on the remediation effects of single types of materials on heavy metal soil pollution. This study examined the impact of both standalone and combined applications of distiller's grains biochar, <i>Lactobacillus plantarum</i> thallus, and the bacterial supernatant on the availability of cadmium (Cd), lead (Pb), and zinc (Zn) in soil, its physicochemical features, and its enzyme activities; this study also examined the growth, physiological and biochemical characteristics, and heavy metal accumulation of Sorghum-sudangrass. The findings suggest that the application of distiller's grains biochar, <i>Lactobacillus plantarum</i> thallus, and the bacterial supernatant can improve the soil's physical and chemical properties and enhance soil enzyme activity while reducing the availability of heavy metals in the soil. Furthermore, the addition of these materials promoted plant growth, increased stress resistance, and significantly decreased the accumulation of heavy metals in the plants. A thorough analysis of the results shows that applying 0.025% <i>Lactobacillus plantarum</i> thallus along with 4.4% distiller's grains biochar produced the best results.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"12 12","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676423/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms12122592","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil contamination with heavy metals is a significant environmental issue that adversely affects plant growth and agricultural productivity. Biochar and microbial inoculants have emerged as a promising approach to solving this problem, and previous studies have focused more on the remediation effects of single types of materials on heavy metal soil pollution. This study examined the impact of both standalone and combined applications of distiller's grains biochar, Lactobacillus plantarum thallus, and the bacterial supernatant on the availability of cadmium (Cd), lead (Pb), and zinc (Zn) in soil, its physicochemical features, and its enzyme activities; this study also examined the growth, physiological and biochemical characteristics, and heavy metal accumulation of Sorghum-sudangrass. The findings suggest that the application of distiller's grains biochar, Lactobacillus plantarum thallus, and the bacterial supernatant can improve the soil's physical and chemical properties and enhance soil enzyme activity while reducing the availability of heavy metals in the soil. Furthermore, the addition of these materials promoted plant growth, increased stress resistance, and significantly decreased the accumulation of heavy metals in the plants. A thorough analysis of the results shows that applying 0.025% Lactobacillus plantarum thallus along with 4.4% distiller's grains biochar produced the best results.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.