Salmonella Typhimurium derived OMV nanoparticle displaying mixed heterologous O-antigens confers immunogenicity and protection against STEC infections in mice.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaoping Bian, Yaolin Chen, Wenjin Zhang, Xinyu Liu, Meihong Lei, Haoxiang Yuan, Mengru Li, Qing Liu, Qingke Kong
{"title":"Salmonella Typhimurium derived OMV nanoparticle displaying mixed heterologous O-antigens confers immunogenicity and protection against STEC infections in mice.","authors":"Xiaoping Bian, Yaolin Chen, Wenjin Zhang, Xinyu Liu, Meihong Lei, Haoxiang Yuan, Mengru Li, Qing Liu, Qingke Kong","doi":"10.1186/s12934-024-02640-6","DOIUrl":null,"url":null,"abstract":"<p><p>Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections. In this study, we constructed an engineered S. Typhimurium to rapidly produce the outer membrane vesicle (OMV) with low endotoxic activity to deliver the O-antigen of E. coli. S. Typhimurium OMV (STmOMV), which displays mixed heterologous O-antigens, was systematically investigated in mice for immunogenicity and the ability to prevent wild-type STEC infection. Animal experiments demonstrated that STmOMV displaying both E. coli O111 and O157 O-antigens by intraperitoneal injection not only induced robust humoral immunity but also provided effective protection against wild-type E. coli O111 and O157 infection in mice, as well as long-lasting immunity. Meanwhile, the O-antigen polysaccharides of E. coli O26 and O45, and O145 and O103 were also mixedly exhibited on STmOMV as O-antigens of the O111 and O157 did. Three mixed STmOMVs were inoculated intraperitoneally to mice, and confer effective protection against six E. coli infections. The STmOMV developed in this study to display mixed heterologous O-antigens provides an innovative and improved strategy for the prevention of multiple STEC infections.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"8"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02640-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections. In this study, we constructed an engineered S. Typhimurium to rapidly produce the outer membrane vesicle (OMV) with low endotoxic activity to deliver the O-antigen of E. coli. S. Typhimurium OMV (STmOMV), which displays mixed heterologous O-antigens, was systematically investigated in mice for immunogenicity and the ability to prevent wild-type STEC infection. Animal experiments demonstrated that STmOMV displaying both E. coli O111 and O157 O-antigens by intraperitoneal injection not only induced robust humoral immunity but also provided effective protection against wild-type E. coli O111 and O157 infection in mice, as well as long-lasting immunity. Meanwhile, the O-antigen polysaccharides of E. coli O26 and O45, and O145 and O103 were also mixedly exhibited on STmOMV as O-antigens of the O111 and O157 did. Three mixed STmOMVs were inoculated intraperitoneally to mice, and confer effective protection against six E. coli infections. The STmOMV developed in this study to display mixed heterologous O-antigens provides an innovative and improved strategy for the prevention of multiple STEC infections.

鼠伤寒沙门菌衍生的OMV纳米颗粒显示混合异源o抗原,赋予免疫原性并保护小鼠免受产志贺毒素大肠杆菌感染。
产志贺毒素大肠杆菌(STEC)是导致严重食源性感染的主要病原体之一,常见的血清型包括大肠杆菌O157、O26、O45、O103、O111、O121和O145。接种疫苗有可能预防产志毒素大肠杆菌感染,但目前还没有获得许可的疫苗来预防多种产志毒素大肠杆菌感染。在这项研究中,我们构建了一种工程鼠伤寒沙门氏菌,以快速产生具有低内毒活性的外膜囊泡(OMV)来传递大肠杆菌的o抗原。鼠伤寒沙门氏菌OMV (STmOMV)显示混合异源o抗原,在小鼠中系统地研究了免疫原性和预防野生型产志贺毒素大肠杆菌感染的能力。动物实验表明,腹腔注射具有大肠杆菌O111和O157 o抗原的STmOMV不仅能诱导小鼠产生强大的体液免疫,而且对野生型大肠杆菌O111和O157感染具有有效的保护作用,并具有持久的免疫作用。与此同时,大肠杆菌O26和O45、O145和O103的o抗原多糖也与O111和O157的o抗原一样在STmOMV上混合展示。将三种混合stmomv腹腔注射到小鼠体内,可有效预防6种大肠杆菌感染。本研究开发的显示混合异源o抗原的STmOMV为预防多种产志异大肠杆菌感染提供了一种创新和改进的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
文献相关原料
公司名称
产品信息
索莱宝
MacConkey agar
索莱宝
Luria-Bertani (LB) broth
索莱宝
TSB agar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信