Integrative analysis of transcriptome and metabolome profiling uncovers underlying mechanisms of the enhancement of the synthesis of biofilm in Sporobolomyces pararoseus NGR under acidic conditions.
IF 4.3 2区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Dandan Wang, Nan Zeng, Chunji Li, Chunwang Li, Yunjiao Wang, Bin Chen, Jiajia Long, Ning Zhang, Bingxue Li
{"title":"Integrative analysis of transcriptome and metabolome profiling uncovers underlying mechanisms of the enhancement of the synthesis of biofilm in Sporobolomyces pararoseus NGR under acidic conditions.","authors":"Dandan Wang, Nan Zeng, Chunji Li, Chunwang Li, Yunjiao Wang, Bin Chen, Jiajia Long, Ning Zhang, Bingxue Li","doi":"10.1186/s12934-024-02636-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sporobolomyces pararoseus is a well-studied oleaginous red yeast that can synthesize a variety of high value-added bioactive compounds. Biofilm is one of the important biological barriers for microbial cells to resist environmental stresses and maintain stable fermentation process. Here, the effect of acidic conditions on the biosynthesis of biofilms in S. pararoseus NGR was investigated through the combination of morphology, biochemistry, and multi-omics approaches.</p><p><strong>Results: </strong>The results showed that the acidic environment was the key factor to trigger the biofilm formation of S. pararoseus NGR. When S. pararoseus NGR was cultured under pH 4.7, the colony morphology was wrinkled, the cells were wrapped by a large amount of extracellular matrix, and the hydrophobicity and anti-oxidative stress ability were significantly improved, and the yield of intracellular carotenoids was significantly increased. Transcriptome and metabolome profiling indicated that carbohydrate metabolism, amino acid metabolism, lipid metabolism, and nucleic acid metabolism in S. pararoseus NGR cells were significantly enriched in biofilm cells under pH 4.7 culture conditions, including 56 differentially expressed genes and 341 differential metabolites.</p><p><strong>Conclusions: </strong>These differential genes and metabolites may play an important role in the formation of biofilms by S. pararoseus NGR in response to acidic stress. The results will provide strategies for the development and utilization of beneficial microbial biofilms, and provide theoretical support for the industrial fermentation production of microorganisms to improve their resistance and maintain stable growth.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"9"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706151/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02636-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sporobolomyces pararoseus is a well-studied oleaginous red yeast that can synthesize a variety of high value-added bioactive compounds. Biofilm is one of the important biological barriers for microbial cells to resist environmental stresses and maintain stable fermentation process. Here, the effect of acidic conditions on the biosynthesis of biofilms in S. pararoseus NGR was investigated through the combination of morphology, biochemistry, and multi-omics approaches.
Results: The results showed that the acidic environment was the key factor to trigger the biofilm formation of S. pararoseus NGR. When S. pararoseus NGR was cultured under pH 4.7, the colony morphology was wrinkled, the cells were wrapped by a large amount of extracellular matrix, and the hydrophobicity and anti-oxidative stress ability were significantly improved, and the yield of intracellular carotenoids was significantly increased. Transcriptome and metabolome profiling indicated that carbohydrate metabolism, amino acid metabolism, lipid metabolism, and nucleic acid metabolism in S. pararoseus NGR cells were significantly enriched in biofilm cells under pH 4.7 culture conditions, including 56 differentially expressed genes and 341 differential metabolites.
Conclusions: These differential genes and metabolites may play an important role in the formation of biofilms by S. pararoseus NGR in response to acidic stress. The results will provide strategies for the development and utilization of beneficial microbial biofilms, and provide theoretical support for the industrial fermentation production of microorganisms to improve their resistance and maintain stable growth.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems