Thomas Stirrat, Robert Martin, Gregorio Baek, Shankar Thiru, Dhairya Lakhani, Muhammad Umair, Anousheh Sayah
{"title":"Pixels to precision: Neuroradiology's leap into 3D printing for personalized medicine.","authors":"Thomas Stirrat, Robert Martin, Gregorio Baek, Shankar Thiru, Dhairya Lakhani, Muhammad Umair, Anousheh Sayah","doi":"10.25259/JCIS_119_2024","DOIUrl":null,"url":null,"abstract":"<p><p>The realm of precision medicine, particularly its application within various sectors, shines notably in neuroradiology, where it leverages the advancements of three-dimensional (3D) printing technology. This synergy has significantly enhanced surgical planning, fostered the creation of tailor-made medical apparatus, bolstered medical pedagogy, and refined targeted therapeutic delivery. This review delves into the contemporary advancements and applications of 3D printing in neuroradiology, underscoring its pivotal role in refining surgical strategies, augmenting patient outcomes, and diminishing procedural risks. It further articulates the utility of 3D-printed anatomical models for enriched comprehension, simulation, and educational endeavors. In addition, it illuminates the horizon of bespoke medical devices and prosthetics, illustrating their utility in addressing specific cranial and spinal anomalies. This narrative extends to scrutinize how 3D printing underpins precision medicine by offering customized drug delivery mechanisms and therapies tailored to the patient's unique medical blueprint. It navigates through the inherent challenges of 3D printing, including the financial implications, the need for procedural standardization, and the assurance of quality. Prospective trajectories and burgeoning avenues, such as material and technological innovations, the confluence with artificial intelligence, and the broadening scope of 3D printing in neurosurgical applications, are explored. Despite existing hurdles, the fusion of 3D printing with neuroradiology heralds a transformative era in precision medicine, poised to elevate patient care standards and pioneer novel surgical paradigms.</p>","PeriodicalId":15512,"journal":{"name":"Journal of Clinical Imaging Science","volume":"14 ","pages":"49"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704292/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Imaging Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25259/JCIS_119_2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The realm of precision medicine, particularly its application within various sectors, shines notably in neuroradiology, where it leverages the advancements of three-dimensional (3D) printing technology. This synergy has significantly enhanced surgical planning, fostered the creation of tailor-made medical apparatus, bolstered medical pedagogy, and refined targeted therapeutic delivery. This review delves into the contemporary advancements and applications of 3D printing in neuroradiology, underscoring its pivotal role in refining surgical strategies, augmenting patient outcomes, and diminishing procedural risks. It further articulates the utility of 3D-printed anatomical models for enriched comprehension, simulation, and educational endeavors. In addition, it illuminates the horizon of bespoke medical devices and prosthetics, illustrating their utility in addressing specific cranial and spinal anomalies. This narrative extends to scrutinize how 3D printing underpins precision medicine by offering customized drug delivery mechanisms and therapies tailored to the patient's unique medical blueprint. It navigates through the inherent challenges of 3D printing, including the financial implications, the need for procedural standardization, and the assurance of quality. Prospective trajectories and burgeoning avenues, such as material and technological innovations, the confluence with artificial intelligence, and the broadening scope of 3D printing in neurosurgical applications, are explored. Despite existing hurdles, the fusion of 3D printing with neuroradiology heralds a transformative era in precision medicine, poised to elevate patient care standards and pioneer novel surgical paradigms.
期刊介绍:
The Journal of Clinical Imaging Science (JCIS) is an open access peer-reviewed journal committed to publishing high-quality articles in the field of Imaging Science. The journal aims to present Imaging Science and relevant clinical information in an understandable and useful format. The journal is owned and published by the Scientific Scholar. Audience Our audience includes Radiologists, Researchers, Clinicians, medical professionals and students. Review process JCIS has a highly rigorous peer-review process that makes sure that manuscripts are scientifically accurate, relevant, novel and important. Authors disclose all conflicts, affiliations and financial associations such that the published content is not biased.