{"title":"Gengnianchun Against H2O2-Induced Oxidative Damage in KGN Cells via miR-548m/FOXO3 Signaling","authors":"Jun Li, Yanqiu Rao, Tao Pu, Ting Xu, Wenjun Wang","doi":"10.1002/jcb.30701","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Gengnianchun (GNC) is a traditional remedy used for diminished ovarian reserve, but its underlying mechanisms remain unclear. This study aimed to explore these mechanisms in human granulosa-like cancer (KGN) cells pretreated with medicated rat serum (MRS) before H<sub>2</sub>O<sub>2</sub> exposure. MRS pretreatment significantly alleviated H<sub>2</sub>O<sub>2</sub>-induced cell damage, including improvements in cell viability, superoxide dismutase and GSH-Px activities, and Bcl-2 expression. Conversely, H<sub>2</sub>O<sub>2</sub> treatment increased apoptosis, autophagosomes, IL-1β, TNF-α, reactive oxygen species, malondialdehyde levels, and the expression of LC-II/LC3-I, Bax, and Beclin-1. GEO database analysis revealed significant differential expression of several miRNAs, including miR-548m. qPCR confirmed that MRS upregulated miR-548m expression, which was downregulated by H<sub>2</sub>O<sub>2</sub> in a dose-dependent manner. Preincubation with MRS prevented the decline in miR-548m expression and mitigated H<sub>2</sub>O<sub>2</sub>-induced damage, including improvements in cell viability, apoptosis, autophagy, and oxidative stress. miR-548m suppressed FOXO3 3'-UTR luciferase activity, and anti-miR-548m enhanced it. Transfection with miR-548m reduced FOXO3 mRNA and protein levels, while anti-miR-548m increased them. These findings suggest that GNC protects against H<sub>2</sub>O<sub>2</sub>-induced ovarian damage by modulating the miR-548m/FOXO3 axis, triggering autophagy and apoptosis.</p>\n </div>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"126 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcb.30701","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gengnianchun (GNC) is a traditional remedy used for diminished ovarian reserve, but its underlying mechanisms remain unclear. This study aimed to explore these mechanisms in human granulosa-like cancer (KGN) cells pretreated with medicated rat serum (MRS) before H2O2 exposure. MRS pretreatment significantly alleviated H2O2-induced cell damage, including improvements in cell viability, superoxide dismutase and GSH-Px activities, and Bcl-2 expression. Conversely, H2O2 treatment increased apoptosis, autophagosomes, IL-1β, TNF-α, reactive oxygen species, malondialdehyde levels, and the expression of LC-II/LC3-I, Bax, and Beclin-1. GEO database analysis revealed significant differential expression of several miRNAs, including miR-548m. qPCR confirmed that MRS upregulated miR-548m expression, which was downregulated by H2O2 in a dose-dependent manner. Preincubation with MRS prevented the decline in miR-548m expression and mitigated H2O2-induced damage, including improvements in cell viability, apoptosis, autophagy, and oxidative stress. miR-548m suppressed FOXO3 3'-UTR luciferase activity, and anti-miR-548m enhanced it. Transfection with miR-548m reduced FOXO3 mRNA and protein levels, while anti-miR-548m increased them. These findings suggest that GNC protects against H2O2-induced ovarian damage by modulating the miR-548m/FOXO3 axis, triggering autophagy and apoptosis.
期刊介绍:
The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.