Sustained inhibition of CSF1R signaling augments antitumor immunity through inhibiting tumor-associated macrophages.

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Takahiko Sato, Daisuke Sugiyama, Jun Koseki, Yasuhiro Kojima, Satomi Hattori, Kazuki Sone, Hitomi Nishinakamura, Tomohiro Ishikawa, Yuichi Ishikawa, Takuma Kato, Hitoshi Kiyoi, Hiroyoshi Nishikawa
{"title":"Sustained inhibition of CSF1R signaling augments antitumor immunity through inhibiting tumor-associated macrophages.","authors":"Takahiko Sato, Daisuke Sugiyama, Jun Koseki, Yasuhiro Kojima, Satomi Hattori, Kazuki Sone, Hitomi Nishinakamura, Tomohiro Ishikawa, Yuichi Ishikawa, Takuma Kato, Hitoshi Kiyoi, Hiroyoshi Nishikawa","doi":"10.1172/jci.insight.178146","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) are one of the key immunosuppressive components in the tumor microenvironment (TME) and contribute to tumor development, progression, and resistance to cancer immunotherapy. Several reagents targeting TAMs have been tested in preclinical and clinical studies, but they have had limited success. Here, we show that a unique reagent, FF-10101, exhibited a sustained inhibitory effect against colony-stimulating factor 1 receptor by forming a covalent bond and reduced immunosuppressive TAMs in the TME, which led to strong antitumor immunity. In preclinical animal models, FF-10101 treatment significantly reduced immunosuppressive TAMs and increased antitumor TAMs in the TME. In addition, tumor antigen-specific CD8+ T cells were increased; consequently, tumor growth was significantly inhibited. Moreover, combination treatment with an anti-programmed cell death 1 (anti-PD-1) antibody and FF-10101 exhibited a far stronger antitumor effect than either treatment alone. In human cancer specimens, FF-10101 treatment reduced programmed cell death 1 ligand 1 (PD-L1) expression on TAMs, as observed in animal models. Thus, FF-10101 acts as an immunomodulatory agent that can reduce immunosuppressive TAMs and augment tumor antigen-specific T cell responses, thereby generating an immunostimulatory TME. We propose that FF-10101 is a potential candidate for successful combination cancer immunotherapy with immune checkpoint inhibitors, such as PD-1/PD-L1 blockade.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721313/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.178146","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor-associated macrophages (TAMs) are one of the key immunosuppressive components in the tumor microenvironment (TME) and contribute to tumor development, progression, and resistance to cancer immunotherapy. Several reagents targeting TAMs have been tested in preclinical and clinical studies, but they have had limited success. Here, we show that a unique reagent, FF-10101, exhibited a sustained inhibitory effect against colony-stimulating factor 1 receptor by forming a covalent bond and reduced immunosuppressive TAMs in the TME, which led to strong antitumor immunity. In preclinical animal models, FF-10101 treatment significantly reduced immunosuppressive TAMs and increased antitumor TAMs in the TME. In addition, tumor antigen-specific CD8+ T cells were increased; consequently, tumor growth was significantly inhibited. Moreover, combination treatment with an anti-programmed cell death 1 (anti-PD-1) antibody and FF-10101 exhibited a far stronger antitumor effect than either treatment alone. In human cancer specimens, FF-10101 treatment reduced programmed cell death 1 ligand 1 (PD-L1) expression on TAMs, as observed in animal models. Thus, FF-10101 acts as an immunomodulatory agent that can reduce immunosuppressive TAMs and augment tumor antigen-specific T cell responses, thereby generating an immunostimulatory TME. We propose that FF-10101 is a potential candidate for successful combination cancer immunotherapy with immune checkpoint inhibitors, such as PD-1/PD-L1 blockade.

持续抑制CSF1R信号通过抑制肿瘤相关巨噬细胞增强抗肿瘤免疫。
肿瘤相关巨噬细胞(tumor -associated macrophages, tam)是肿瘤微环境(tumor microenvironment, TME)中关键的免疫抑制成分之一,有助于肿瘤的发生、进展和对癌症免疫治疗的耐药性。一些靶向tam的试剂已经在临床前和临床研究中进行了测试,但它们的成功有限。在这里,我们展示了一种独特的试剂FF-10101,通过形成共价键和减少TME中的免疫抑制tam,对集落刺激因子1受体表现出持续的抑制作用,从而导致强大的抗肿瘤免疫。在临床前动物模型中,FF-10101治疗显著降低了TME中的免疫抑制性tam,并增加了抗肿瘤tam。此外,肿瘤抗原特异性CD8+ T细胞增多;因此,肿瘤生长明显受到抑制。此外,抗程序性细胞死亡1(抗pd -1)抗体和FF-10101联合治疗显示出比单独治疗强得多的抗肿瘤效果。在动物模型中观察到,在人类癌症标本中,FF-10101治疗降低了TAMs上程序性细胞死亡1配体1 (PD-L1)的表达。因此,FF-10101作为一种免疫调节剂,可以减少免疫抑制性TME,增强肿瘤抗原特异性T细胞反应,从而产生免疫刺激性TME。我们认为FF-10101是一种潜在的候选药物,可以成功地与免疫检查点抑制剂(如PD-1/PD-L1阻断)联合进行癌症免疫治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信