Maher M Alrashed, Mohanad El-Harbawi, Chun-Yang Yin, Abdullah Alquraini, Mohamed Aboughaly, Musaad Khaled Aleid, Khaled Bin Bandar, Saad Aljlil, Abdulrahman Saud Alalawi, Rayan Omar Alturkistani
{"title":"Sustainable synthesis of silver nanoparticles from Conocarpus seeds for removal of methylene blue.","authors":"Maher M Alrashed, Mohanad El-Harbawi, Chun-Yang Yin, Abdullah Alquraini, Mohamed Aboughaly, Musaad Khaled Aleid, Khaled Bin Bandar, Saad Aljlil, Abdulrahman Saud Alalawi, Rayan Omar Alturkistani","doi":"10.1080/15226514.2025.2450834","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a sustainable biological approach for synthesizing silver nanoparticles (AgNPs) using Conocarpus seeds, aimed at improving the adsorption and photocatalytic degradation of methylene blue (MB) in wastewater treatment. The photocatalytic efficiency of AgNPs, synthesized under varying concentrations of silver nitrate (AgNO<sub>3</sub>) and pH levels, was evaluated, together with the effectiveness of a photocatalytic reactor. The synthesized samples were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, and atomic force microscopy (AFM). Results showed that MB degradation occurred quickly within the first 50 min, achieving a 99.60% removal efficiency <i>via</i> adsorption and photocatalytic degradation under optimal conditions (pH = 3, 1 g sample) after 1 h. The maximum adsorption capacity reached 49.80 mg·g<sup>-1</sup>. Furthermore, the AgNPs demonstrated a significant degradation rate of 99.76% within 2 h under UV light, highlighting the synergistic effects of AgNPs in enhancing both adsorption and photocatalysis. This study not only accentuates the potential of Conocarpus seeds as an eco-friendly precursor for AgNP synthesis but also highlights the applicability of AgNPs in wastewater treatment.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2450834","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a sustainable biological approach for synthesizing silver nanoparticles (AgNPs) using Conocarpus seeds, aimed at improving the adsorption and photocatalytic degradation of methylene blue (MB) in wastewater treatment. The photocatalytic efficiency of AgNPs, synthesized under varying concentrations of silver nitrate (AgNO3) and pH levels, was evaluated, together with the effectiveness of a photocatalytic reactor. The synthesized samples were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, and atomic force microscopy (AFM). Results showed that MB degradation occurred quickly within the first 50 min, achieving a 99.60% removal efficiency via adsorption and photocatalytic degradation under optimal conditions (pH = 3, 1 g sample) after 1 h. The maximum adsorption capacity reached 49.80 mg·g-1. Furthermore, the AgNPs demonstrated a significant degradation rate of 99.76% within 2 h under UV light, highlighting the synergistic effects of AgNPs in enhancing both adsorption and photocatalysis. This study not only accentuates the potential of Conocarpus seeds as an eco-friendly precursor for AgNP synthesis but also highlights the applicability of AgNPs in wastewater treatment.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.