A Domain Adaptive Interpretable Substructure-Aware Graph Attention Network for Drug-Drug Interaction Prediction.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Qi Zhang, Yuxiao Wei, Liwei Liu
{"title":"A Domain Adaptive Interpretable Substructure-Aware Graph Attention Network for Drug-Drug Interaction Prediction.","authors":"Qi Zhang, Yuxiao Wei, Liwei Liu","doi":"10.1007/s12539-024-00680-5","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of drug-drug interaction (DDI) is essential to improve clinical efficacy, avoid adverse effects of drug combination therapy, and enhance drug safety. Recently researchers have developed several computer-aided methods for DDI prediction. However, these methods lack the substructural features that are critical to drug interactions and are not effective in generalizing across domains and different distribution data. In this work, we present SAGAN, a domain adaptive interpretable substructure-aware graph attention network for DDI prediction. Based on attention mechanism and unsupervised clustering algorithm, we propose a new substructure segmentation method, which segments the drug molecule into multiple substructures, learns the mechanism of drug interaction from the perspective of interaction, and identifies important interaction regions between drugs. To enhance the generalization ability of the model, we improve and apply a conditional domain adversarial network to achieve cross-domain generalization by alternately optimizing the cross-entropy loss on the source domain and the adversarial loss of the domain discriminator. We evaluate and compare SAGAN with the state-of-the-art DDI prediction model on four real-world datasets for both in-domain and cross-domain scenarios, and show that SAGAN achieves the best overall performance. Moreover, the visualization results of the model show that SAGAN has achieved pharmacologically significant substructure extraction, which can help drug developers screen for some undiscovered local interaction sites, and provide important information for further drug structure optimization. The codes and datasets are available online at https://github.com/wyx2012/SAGAN .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00680-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of drug-drug interaction (DDI) is essential to improve clinical efficacy, avoid adverse effects of drug combination therapy, and enhance drug safety. Recently researchers have developed several computer-aided methods for DDI prediction. However, these methods lack the substructural features that are critical to drug interactions and are not effective in generalizing across domains and different distribution data. In this work, we present SAGAN, a domain adaptive interpretable substructure-aware graph attention network for DDI prediction. Based on attention mechanism and unsupervised clustering algorithm, we propose a new substructure segmentation method, which segments the drug molecule into multiple substructures, learns the mechanism of drug interaction from the perspective of interaction, and identifies important interaction regions between drugs. To enhance the generalization ability of the model, we improve and apply a conditional domain adversarial network to achieve cross-domain generalization by alternately optimizing the cross-entropy loss on the source domain and the adversarial loss of the domain discriminator. We evaluate and compare SAGAN with the state-of-the-art DDI prediction model on four real-world datasets for both in-domain and cross-domain scenarios, and show that SAGAN achieves the best overall performance. Moreover, the visualization results of the model show that SAGAN has achieved pharmacologically significant substructure extraction, which can help drug developers screen for some undiscovered local interaction sites, and provide important information for further drug structure optimization. The codes and datasets are available online at https://github.com/wyx2012/SAGAN .

用于药物-药物相互作用预测的领域自适应可解释子结构感知图注意网络。
准确预测药物相互作用(DDI)对提高临床疗效、避免药物联合治疗不良反应、提高药物安全性至关重要。最近,研究人员开发了几种计算机辅助的DDI预测方法。然而,这些方法缺乏对药物相互作用至关重要的亚结构特征,并且在跨域和不同分布数据的推广中不有效。在这项工作中,我们提出了SAGAN,一个用于DDI预测的领域自适应可解释子结构感知图注意网络。基于注意机制和无监督聚类算法,提出了一种新的子结构分割方法,将药物分子分割成多个子结构,从相互作用的角度学习药物相互作用的机制,识别药物之间重要的相互作用区域。为了提高模型的泛化能力,我们改进并应用了一个条件域对抗网络,通过交替优化源域上的交叉熵损失和域鉴别器的对抗损失来实现跨域泛化。我们在4个真实数据集上对SAGAN与最先进的DDI预测模型进行了评估和比较,并在域内和跨域场景下进行了比较,结果表明SAGAN达到了最佳的整体性能。此外,该模型的可视化结果表明,SAGAN已经实现了具有药理意义的亚结构提取,这可以帮助药物开发人员筛选一些未被发现的局部相互作用位点,并为进一步优化药物结构提供重要信息。代码和数据集可在https://github.com/wyx2012/SAGAN上在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信