Synergistic effect of naringenin and mild heat for inactivation of E. coli O157:H7, S. Typhimurium, L. monocytogenes, and S. aureus in peptone water and cold brew coffee.
{"title":"Synergistic effect of naringenin and mild heat for inactivation of E. coli O157:H7, S. Typhimurium, L. monocytogenes, and S. aureus in peptone water and cold brew coffee.","authors":"Sang-Jun Han, Do-Kyun Kim","doi":"10.1016/j.ijfoodmicro.2024.111051","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the bactericidal effect of naringenin (NG), a plant-derived flavonoid, and its synergistic effect with mild heat (MH) treatment at 50 °C in peptone water (PW) and ready-to-drink cold brew coffee (RDC). Among various NG concentrations (1-20 mM), 10 mM NG resulted in the greatest inactivation for Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. In RDC, NG + MH treatment resulted in a 5-8-log reduction in all pathogens after 10 min, except for S. aureus. In contrast, NG or MH treatment alone exhibited only marginal bactericidal effects. From inactivating mechanism analysis, lipid membrane destruction and intracellular enzyme inactivation were the key factors for pathogen inactivation. Cell membrane and enzyme dysfunctions were identified in propidium iodide (PI) uptake test, membrane potential assay, and membrane protein analysis. Furthermore, NG + MH exerted minimal influence on the quality attributes of RDC in pH, color, and total phenolic content. These results indicated that the NG + MH treatment system effectively ensured microbial safety in cold brew coffee while enhancing its nutritional value and preserving quality attributes.</p>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"430 ","pages":"111051"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.ijfoodmicro.2024.111051","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to investigate the bactericidal effect of naringenin (NG), a plant-derived flavonoid, and its synergistic effect with mild heat (MH) treatment at 50 °C in peptone water (PW) and ready-to-drink cold brew coffee (RDC). Among various NG concentrations (1-20 mM), 10 mM NG resulted in the greatest inactivation for Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. In RDC, NG + MH treatment resulted in a 5-8-log reduction in all pathogens after 10 min, except for S. aureus. In contrast, NG or MH treatment alone exhibited only marginal bactericidal effects. From inactivating mechanism analysis, lipid membrane destruction and intracellular enzyme inactivation were the key factors for pathogen inactivation. Cell membrane and enzyme dysfunctions were identified in propidium iodide (PI) uptake test, membrane potential assay, and membrane protein analysis. Furthermore, NG + MH exerted minimal influence on the quality attributes of RDC in pH, color, and total phenolic content. These results indicated that the NG + MH treatment system effectively ensured microbial safety in cold brew coffee while enhancing its nutritional value and preserving quality attributes.
期刊介绍:
The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.