Élyssa Adriolly Freitas Tavares, Débora Lopes Silva de Souza, Francisca Tayná da Silva Gomes, Maria Vanessa Freitas Holanda, Rodrigo Freire Oliveira, Karina Maia Paiva, Paulo Leonardo Araujo de Gois Morais, Cláudio Lopes de Vasconcelos, Diogo Manuel Lopes de Paiva Cavalcanti, José Rodolfo Lopes de Paiva Cavalcanti
{"title":"Calcium-Binding Proteins in the Autistic Brain—Potential Links to Symptom Development","authors":"Élyssa Adriolly Freitas Tavares, Débora Lopes Silva de Souza, Francisca Tayná da Silva Gomes, Maria Vanessa Freitas Holanda, Rodrigo Freire Oliveira, Karina Maia Paiva, Paulo Leonardo Araujo de Gois Morais, Cláudio Lopes de Vasconcelos, Diogo Manuel Lopes de Paiva Cavalcanti, José Rodolfo Lopes de Paiva Cavalcanti","doi":"10.1002/jdn.10412","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Autism spectrum disorder (ASD) is a complex challenge, influenced by genetic and environmental factors. This review focuses on the proteins calbindin (CB), calretinin (CR) and parvalbumin (PV) in the context of ASD, exploring their clinical correlations and providing a deeper understanding of the spectrum. In addition, we seek to understand the role of these proteins in GABAergic regulation and their implication in the pathophysiology of ASD. The studies reviewed revealed a significant decrease in PV+ interneurons in the prefrontal cortex of individuals with ASD compared with typical controls. This reduction is associated with local synaptic hyperconnectivity, characterized by an increase in the number of excitatory synapses and a reduction in inhibitory synapses. A correlation was also observed between the decrease in PV+ and the severity of the behavioural symptoms of ASD. The research highlights GABAergic imbalance as a crucial component in the neuropathology of ASD, highlighting the role of calcium-binding proteins, especially PV, in regulating neuronal excitability and modulating synaptic connectivity. These findings provide valuable insights for the development of new therapeutic strategies intended to modulate neuronal activity and improve the symptoms associated with ASD.</p>\n </div>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"85 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jdn.10412","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) is a complex challenge, influenced by genetic and environmental factors. This review focuses on the proteins calbindin (CB), calretinin (CR) and parvalbumin (PV) in the context of ASD, exploring their clinical correlations and providing a deeper understanding of the spectrum. In addition, we seek to understand the role of these proteins in GABAergic regulation and their implication in the pathophysiology of ASD. The studies reviewed revealed a significant decrease in PV+ interneurons in the prefrontal cortex of individuals with ASD compared with typical controls. This reduction is associated with local synaptic hyperconnectivity, characterized by an increase in the number of excitatory synapses and a reduction in inhibitory synapses. A correlation was also observed between the decrease in PV+ and the severity of the behavioural symptoms of ASD. The research highlights GABAergic imbalance as a crucial component in the neuropathology of ASD, highlighting the role of calcium-binding proteins, especially PV, in regulating neuronal excitability and modulating synaptic connectivity. These findings provide valuable insights for the development of new therapeutic strategies intended to modulate neuronal activity and improve the symptoms associated with ASD.
期刊介绍:
International Journal of Developmental Neuroscience publishes original research articles and critical review papers on all fundamental and clinical aspects of nervous system development, renewal and regeneration, as well as on the effects of genetic and environmental perturbations of brain development and homeostasis leading to neurodevelopmental disorders and neurological conditions. Studies describing the involvement of stem cells in nervous system maintenance and disease (including brain tumours), stem cell-based approaches for the investigation of neurodegenerative diseases, roles of neuroinflammation in development and disease, and neuroevolution are also encouraged. Investigations using molecular, cellular, physiological, genetic and epigenetic approaches in model systems ranging from simple invertebrates to human iPSC-based 2D and 3D models are encouraged, as are studies using experimental models that provide behavioural or evolutionary insights. The journal also publishes Special Issues dealing with topics at the cutting edge of research edited by Guest Editors appointed by the Editor in Chief. A major aim of the journal is to facilitate the transfer of fundamental studies of nervous system development, maintenance, and disease to clinical applications. The journal thus intends to disseminate valuable information for both biologists and physicians. International Journal of Developmental Neuroscience is owned and supported by The International Society for Developmental Neuroscience (ISDN), an organization of scientists interested in advancing developmental neuroscience research in the broadest sense.