The Mechanism of Baicalin in the Treatment of Mycoplasma Pneumoniae Pneumonia by Regulating NLRP3/Caspase-1 Signaling Pathway.

IF 2.9 4区 医学 Q3 IMMUNOLOGY
Dan Song, Wenfeng Wei, Jie Zhang, Lu Zhang, Weiming Wang, Jinhai Huo
{"title":"The Mechanism of Baicalin in the Treatment of Mycoplasma Pneumoniae Pneumonia by Regulating NLRP3/Caspase-1 Signaling Pathway.","authors":"Dan Song, Wenfeng Wei, Jie Zhang, Lu Zhang, Weiming Wang, Jinhai Huo","doi":"10.1080/08820139.2025.2450244","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study investigated the mechanism of baicalin (BIA) attenuating the inflammatory response and lung injury in mycoplasma pneumoniae pneumonia (MPP) mice.</p><p><strong>Methods: </strong>MPP mouse models were established and then treated with BIA, azithromycin, or NLRP3 inflammasome activator. Lung wet-to-dry weight (W/D) ratio were weighed. Serum levels of MP-IgM, C-reactive protein (CRP) and bronchoalveolar lavage fluid (BALF) protein were detected by kits, NLRP3/Caspase-1 pathway-related protein levels by Western blot, and IL-1β, IL-18, IL-6 and TNF-α levels by ELISA. HE staining was performed to detect lung injury.</p><p><strong>Results: </strong>MPP mice showed elevated mouse lung W/D ratio, upregulated serum MP-IgM and CRP levels and BALF protein, and enhanced IL-6 and TNF-α levels, which were reversed by BIA or azithromycin treatment, suggesting that BIA attenuated pulmonary inflammatory response in MPP mice. The lung tissue of MPP mice showed upregulated NLRP3, cleaved Caspase-1,Caspase-1, GSDMD-N and GSDMD levels and raised IL-1β and IL-18 levels, and changes were annulled by BIA or azithromycin treatment, suggesting that BIA inhibited the NLRP3/Caspase-1 pathway activation. NLRP3/Caspase-1 pathway activation partially abrogated the alleviative effect of BIA on the pulmonary inflammatory response of MPP mice.</p><p><strong>Conclusion: </strong>BIA mitigates inflammatory response and lung injury in MPP mice by inhibiting NLRP3/Caspase-1 pathway activation.</p>","PeriodicalId":13387,"journal":{"name":"Immunological Investigations","volume":" ","pages":"1-13"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunological Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08820139.2025.2450244","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study investigated the mechanism of baicalin (BIA) attenuating the inflammatory response and lung injury in mycoplasma pneumoniae pneumonia (MPP) mice.

Methods: MPP mouse models were established and then treated with BIA, azithromycin, or NLRP3 inflammasome activator. Lung wet-to-dry weight (W/D) ratio were weighed. Serum levels of MP-IgM, C-reactive protein (CRP) and bronchoalveolar lavage fluid (BALF) protein were detected by kits, NLRP3/Caspase-1 pathway-related protein levels by Western blot, and IL-1β, IL-18, IL-6 and TNF-α levels by ELISA. HE staining was performed to detect lung injury.

Results: MPP mice showed elevated mouse lung W/D ratio, upregulated serum MP-IgM and CRP levels and BALF protein, and enhanced IL-6 and TNF-α levels, which were reversed by BIA or azithromycin treatment, suggesting that BIA attenuated pulmonary inflammatory response in MPP mice. The lung tissue of MPP mice showed upregulated NLRP3, cleaved Caspase-1,Caspase-1, GSDMD-N and GSDMD levels and raised IL-1β and IL-18 levels, and changes were annulled by BIA or azithromycin treatment, suggesting that BIA inhibited the NLRP3/Caspase-1 pathway activation. NLRP3/Caspase-1 pathway activation partially abrogated the alleviative effect of BIA on the pulmonary inflammatory response of MPP mice.

Conclusion: BIA mitigates inflammatory response and lung injury in MPP mice by inhibiting NLRP3/Caspase-1 pathway activation.

黄芩苷通过调节NLRP3/Caspase-1信号通路治疗肺炎支原体肺炎的机制
目的:探讨黄芩苷(BIA)减轻肺炎支原体肺炎(MPP)小鼠炎症反应和肺损伤的作用机制。方法:建立MPP小鼠模型,分别给予BIA、阿奇霉素或NLRP3炎性小体激活剂治疗。称重肺干湿重(W/D)比。ELISA法检测血清MP-IgM、c反应蛋白(CRP)和支气管肺泡灌洗液(BALF)蛋白水平,Western blot法检测NLRP3/Caspase-1通路相关蛋白水平,ELISA法检测IL-1β、IL-18、IL-6和TNF-α水平。HE染色检测肺损伤。结果:MPP小鼠肺W/D比升高,血清MP-IgM、CRP水平和BALF蛋白水平升高,IL-6、TNF-α水平升高,而BIA或阿奇霉素治疗可逆转这一变化,提示BIA可减轻MPP小鼠的肺部炎症反应。MPP小鼠肺组织NLRP3、Caspase-1、Caspase-1、GSDMD- n和GSDMD水平上调,IL-1β和IL-18水平升高,BIA或阿奇霉素处理可消除这一变化,提示BIA抑制了NLRP3/Caspase-1通路的激活。NLRP3/Caspase-1通路的激活部分抵消了BIA对MPP小鼠肺部炎症反应的缓解作用。结论:BIA通过抑制NLRP3/Caspase-1通路的激活,减轻MPP小鼠的炎症反应和肺损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Immunological Investigations
Immunological Investigations 医学-免疫学
CiteScore
5.50
自引率
7.10%
发文量
49
审稿时长
3 months
期刊介绍: Disseminating immunological developments on a worldwide basis, Immunological Investigations encompasses all facets of fundamental and applied immunology, including immunohematology and the study of allergies. This journal provides information presented in the form of original research articles and book reviews, giving a truly in-depth examination of the latest advances in molecular and cellular immunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信