Q241R mutation of Braf causes neurological abnormalities in a mouse model of cardio-facio-cutaneous syndrome, independent of developmental malformations.

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Akira Moriya, Shin-Ichi Inoue, Fumihito Saitow, Moe Keitoku, Noato Suzuki, Etsumi Oike, Eriko Urano, Eiko Matsumoto, Hidenori Suzuki, Yoko Aoki, Hiroshi Ohnishi
{"title":"Q241R mutation of Braf causes neurological abnormalities in a mouse model of cardio-facio-cutaneous syndrome, independent of developmental malformations.","authors":"Akira Moriya, Shin-Ichi Inoue, Fumihito Saitow, Moe Keitoku, Noato Suzuki, Etsumi Oike, Eriko Urano, Eiko Matsumoto, Hidenori Suzuki, Yoko Aoki, Hiroshi Ohnishi","doi":"10.1093/hmg/ddae196","DOIUrl":null,"url":null,"abstract":"<p><p>Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes. To this end, we generated Braf mutant mice expressing BRAFQ241R specifically in mature excitatory neurons (n-BrafQ241R/+). We found no growth retardation or cardiac malformations in n-BrafQ241R/+ mice, indicating normal development. Behavioral analysis revealed that n-BrafQ241R/+ mice exhibited reduced home cage activity and learning disability, which were similar to those of systemic BrafQ241R/+ mice. The active form of ERK was increased in the hippocampus of n-BrafQ241R/+ mice, whereas basal synaptic transmission and synaptic plasticity in hippocampal Schaffer collateral-CA1 synapses seems to be normal. Transcriptome analysis of the hippocampal tissue revealed significant changes in the expression of genes involved in regulation of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway, synaptic function and memory formation. These data suggest that the neuronal dysfunction observed in the systemic CFC mouse model is due to the disruption of homeostasis of the RAS/MAPK signaling pathway by the activated Braf mutant after maturation, rather than abnormal development of the brain. A similar mechanism may be possible in human CFC syndrome.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"418-434"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae196","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes. To this end, we generated Braf mutant mice expressing BRAFQ241R specifically in mature excitatory neurons (n-BrafQ241R/+). We found no growth retardation or cardiac malformations in n-BrafQ241R/+ mice, indicating normal development. Behavioral analysis revealed that n-BrafQ241R/+ mice exhibited reduced home cage activity and learning disability, which were similar to those of systemic BrafQ241R/+ mice. The active form of ERK was increased in the hippocampus of n-BrafQ241R/+ mice, whereas basal synaptic transmission and synaptic plasticity in hippocampal Schaffer collateral-CA1 synapses seems to be normal. Transcriptome analysis of the hippocampal tissue revealed significant changes in the expression of genes involved in regulation of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway, synaptic function and memory formation. These data suggest that the neuronal dysfunction observed in the systemic CFC mouse model is due to the disruption of homeostasis of the RAS/MAPK signaling pathway by the activated Braf mutant after maturation, rather than abnormal development of the brain. A similar mechanism may be possible in human CFC syndrome.

Braf的Q241R突变导致心脏-面部-皮肤综合征小鼠模型的神经异常,独立于发育畸形。
BRAF组成型活性突变体可引起心脏-面部-皮肤(CFC)综合征,以生长发育缺陷、心脏畸形、面部特征、皮肤表现和智力低下为特征。据报道,人类CFC综合征的动物模型,系统性BrafQ241R/+突变小鼠,表现出多种CFC综合征样表型。在这项研究中,我们分析了Braf突变对神经功能的影响,而不是对发育过程的影响。为此,我们在成熟兴奋性神经元(n-BrafQ241R/+)中特异性表达BRAFQ241R的Braf突变小鼠。我们没有发现n-BrafQ241R/+小鼠生长迟缓或心脏畸形,表明发育正常。行为学分析显示,n-BrafQ241R/+小鼠表现出与系统BrafQ241R/+小鼠相似的家养笼活动减少和学习障碍。n-BrafQ241R/+小鼠海马中ERK活性形式增加,而海马Schaffer侧侧- ca1突触的基础突触传递和突触可塑性似乎正常。海马组织转录组分析显示,参与调控RAS/丝裂原活化蛋白激酶(MAPK)信号通路、突触功能和记忆形成的基因表达发生了显著变化。这些数据表明,在系统性CFC小鼠模型中观察到的神经元功能障碍是由于成熟后激活的Braf突变体破坏了RAS/MAPK信号通路的稳态,而不是大脑发育异常。在人类CFC综合征中可能存在类似的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信