Electroacupuncture normalized tumor vasculature by downregulating glyoxalase-1 to polarize tumor-associated macrophage to M1 phenotype in triple-negative breast cancer
Xuewei Qi , Yanyan Lian , Zhenjia Fan , Hui Wang , Honglin Jiang , Mengyang He , Liling Li , Jinchang Huang , Yuxiang Wan
{"title":"Electroacupuncture normalized tumor vasculature by downregulating glyoxalase-1 to polarize tumor-associated macrophage to M1 phenotype in triple-negative breast cancer","authors":"Xuewei Qi , Yanyan Lian , Zhenjia Fan , Hui Wang , Honglin Jiang , Mengyang He , Liling Li , Jinchang Huang , Yuxiang Wan","doi":"10.1016/j.intimp.2024.113988","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Triple-negative breast cancer is a particularly aggressive type of breast cancer that is closely associated with abnormal vascularization within the tumor. However, traditional anti-VEGF therapies and other treatments have limited efficacy. Tumor-associated macrophages (TAMs) induce and regulate tumor angiogenesis. In recent years, regulating TAMs polarization has become a hot topic for research with objectives to normalize tumor vasculature and improve drug delivery and the tumor microenvironment. Our previous studies have found that peritumoral electroacupuncture (EA) can regulate tumor angiogenesis, but the underlying mechanism remains unclear.</div></div><div><h3>Methods</h3><div>In this study, we examined the phenotype of TAMs and inflammatory factors to observe the effect of peritumoral electroacupuncture on the phenotypic polarization of TAMs. Based on this, we evaluated the structure and function of tumor vasculature. Finally, we conducted a preliminary exploration of the mechanism underlying the regulation of TAMs phenotypic polarization by peritumoral electroacupuncture.</div></div><div><h3>Results</h3><div>In this study, we found that peritumoral electroacupuncture could promote the phenotypic polarization of TAMs toward the M1 type, thereby reducing microvascular density in tumor tissue, increasing pericyte coverage, improving the stability of the basement membrane, promoting vascular maturation, and enhancing perfusion while reducing tissue hypoxia.</div></div><div><h3>Conclusions</h3><div>Peritumoral electroacupuncture can promote the phenotypic polarization of TAMs toward the M1 type, leading to normalization of tumor vascular structure and function. The mechanism may be related to the downregulation of glyoxalase-1 and subsequent activation of the MGO-AGEs/RAGE axis.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"147 ","pages":"Article 113988"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924025104","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Triple-negative breast cancer is a particularly aggressive type of breast cancer that is closely associated with abnormal vascularization within the tumor. However, traditional anti-VEGF therapies and other treatments have limited efficacy. Tumor-associated macrophages (TAMs) induce and regulate tumor angiogenesis. In recent years, regulating TAMs polarization has become a hot topic for research with objectives to normalize tumor vasculature and improve drug delivery and the tumor microenvironment. Our previous studies have found that peritumoral electroacupuncture (EA) can regulate tumor angiogenesis, but the underlying mechanism remains unclear.
Methods
In this study, we examined the phenotype of TAMs and inflammatory factors to observe the effect of peritumoral electroacupuncture on the phenotypic polarization of TAMs. Based on this, we evaluated the structure and function of tumor vasculature. Finally, we conducted a preliminary exploration of the mechanism underlying the regulation of TAMs phenotypic polarization by peritumoral electroacupuncture.
Results
In this study, we found that peritumoral electroacupuncture could promote the phenotypic polarization of TAMs toward the M1 type, thereby reducing microvascular density in tumor tissue, increasing pericyte coverage, improving the stability of the basement membrane, promoting vascular maturation, and enhancing perfusion while reducing tissue hypoxia.
Conclusions
Peritumoral electroacupuncture can promote the phenotypic polarization of TAMs toward the M1 type, leading to normalization of tumor vascular structure and function. The mechanism may be related to the downregulation of glyoxalase-1 and subsequent activation of the MGO-AGEs/RAGE axis.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.