Masami Kojima, Takafumi Tasaki, Toshio Kamijo, Aki Hada, Yukihisa Suzuki, Alfred Kik, Masateru Ikehata, Hiroshi Sasaki
{"title":"Investigation of the Ocular Response and Corneal Damage Threshold of Exposure to 28 GHz Quasi-millimeter Wave Exposure.","authors":"Masami Kojima, Takafumi Tasaki, Toshio Kamijo, Aki Hada, Yukihisa Suzuki, Alfred Kik, Masateru Ikehata, Hiroshi Sasaki","doi":"10.1097/HP.0000000000001951","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Electromagnetic radiation energy at millimeter wave frequencies, typically 30 GHz to 300 GHz, is ubiquitously used in society in devices for telecommunications; radar and imaging systems for vehicle collision avoidance, security screening, and medical equipment; scientific research tools for spectroscopy; industrial applications for non-destructive testing and precise measurement; and military and defense applications. Understanding the biological effects of this technology is essential. We have been investigating ocular responses and damage thresholds comparing various frequencies using rabbit eyes and dedicated experimental apparatus. In this study we investigated the 28 GHz quasi-millimeter wave band (wavelength: 10.7 mm), a candidate for 5G communication. Similar to millimeter wave frequencies, ocular damage from exposure to 28 GHz for 6 min (400 mW cm -2 ) included corneal epithelial damage, corneal edema, and opacity. The incident power density threshold, indicating a 50% probability of ocular damage from exposure for 6 min, was found to be 359 mW cm -2 for 28 GHz. Comparing the ocular exposure area for various millimeter wave frequencies (40, 75, 95 GHz) and 28 GHz quasi-millimeter waves using a thermosensitive liquid crystal capsule, we found that for millimeter waves, even at identical incident power densities, the ocular exposure area decreases as the frequency increases (lens effect). However, this lens effect was not observed at 28 GHz, where the entire anterior segment area was exposed to radio waves.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"487-496"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001951","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Electromagnetic radiation energy at millimeter wave frequencies, typically 30 GHz to 300 GHz, is ubiquitously used in society in devices for telecommunications; radar and imaging systems for vehicle collision avoidance, security screening, and medical equipment; scientific research tools for spectroscopy; industrial applications for non-destructive testing and precise measurement; and military and defense applications. Understanding the biological effects of this technology is essential. We have been investigating ocular responses and damage thresholds comparing various frequencies using rabbit eyes and dedicated experimental apparatus. In this study we investigated the 28 GHz quasi-millimeter wave band (wavelength: 10.7 mm), a candidate for 5G communication. Similar to millimeter wave frequencies, ocular damage from exposure to 28 GHz for 6 min (400 mW cm -2 ) included corneal epithelial damage, corneal edema, and opacity. The incident power density threshold, indicating a 50% probability of ocular damage from exposure for 6 min, was found to be 359 mW cm -2 for 28 GHz. Comparing the ocular exposure area for various millimeter wave frequencies (40, 75, 95 GHz) and 28 GHz quasi-millimeter waves using a thermosensitive liquid crystal capsule, we found that for millimeter waves, even at identical incident power densities, the ocular exposure area decreases as the frequency increases (lens effect). However, this lens effect was not observed at 28 GHz, where the entire anterior segment area was exposed to radio waves.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.