Multi-site, multi-vendor development and validation of a deep learning model for liver stiffness prediction using abdominal biparametric MRI.

IF 4.7 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
European Radiology Pub Date : 2025-07-01 Epub Date: 2025-01-09 DOI:10.1007/s00330-024-11312-3
Redha Ali, Hailong Li, Huixian Zhang, Wen Pan, Scott B Reeder, David Harris, William Masch, Anum Aslam, Krishna Shanbhogue, Anas Bernieh, Sarangarajan Ranganathan, Nehal Parikh, Jonathan R Dillman, Lili He
{"title":"Multi-site, multi-vendor development and validation of a deep learning model for liver stiffness prediction using abdominal biparametric MRI.","authors":"Redha Ali, Hailong Li, Huixian Zhang, Wen Pan, Scott B Reeder, David Harris, William Masch, Anum Aslam, Krishna Shanbhogue, Anas Bernieh, Sarangarajan Ranganathan, Nehal Parikh, Jonathan R Dillman, Lili He","doi":"10.1007/s00330-024-11312-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic liver disease (CLD) is a substantial cause of morbidity and mortality worldwide. Liver stiffness, as measured by MR elastography (MRE), is well-accepted as a surrogate marker of liver fibrosis.</p><p><strong>Purpose: </strong>To develop and validate deep learning (DL) models for predicting MRE-derived liver stiffness using routine clinical non-contrast abdominal T1-weighted (T1w) and T2-weighted (T2w) data from multiple institutions/system manufacturers in pediatric and adult patients.</p><p><strong>Materials and methods: </strong>We identified pediatric and adult patients with known or suspected CLD from four institutions, who underwent clinical MRI with MRE from 2011 to 2022. We used T1w and T2w data to train DL models for liver stiffness classification. Patients were categorized into two groups for binary classification using liver stiffness thresholds (≥ 2.5 kPa, ≥ 3.0 kPa, ≥ 3.5 kPa, ≥ 4 kPa, or ≥ 5 kPa), reflecting various degrees of liver stiffening.</p><p><strong>Results: </strong>We identified 4695 MRI examinations from 4295 patients (mean ± SD age, 47.6 ± 18.7 years; 428 (10.0%) pediatric; 2159 males [50.2%]). With a primary liver stiffness threshold of 3.0 kPa, our model correctly classified patients into no/minimal (< 3.0 kPa) vs moderate/severe (≥ 3.0 kPa) liver stiffness with AUROCs of 0.83 (95% CI: 0.82, 0.84) in our internal multi-site cross-validation (CV) experiment, 0.82 (95% CI: 0.80, 0.84) in our temporal hold-out validation experiment, and 0.79 (95% CI: 0.75, 0.81) in our external leave-one-site-out CV experiment. The developed model is publicly available ( https://github.com/almahdir1/Multi-channel-DeepLiverNet2.0.git ).</p><p><strong>Conclusion: </strong>Our DL models exhibited reasonable diagnostic performance for categorical classification of liver stiffness on a large diverse dataset using T1w and T2w MRI data.</p><p><strong>Key points: </strong>Question Can DL models accurately predict liver stiffness using routine clinical biparametric MRI in pediatric and adult patients with CLD? Findings DeepLiverNet2.0 used biparametric MRI data to classify liver stiffness, achieving AUROCs of 0.83, 0.82, and 0.79 for multi-site CV, hold-out validation, and external CV. Clinical relevance Our DeepLiverNet2.0 AI model can categorically classify the severity of liver stiffening using anatomic biparametric MR images in children and young adults. Model refinements and incorporation of clinical features may decrease the need for MRE.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":"4362-4373"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-11312-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chronic liver disease (CLD) is a substantial cause of morbidity and mortality worldwide. Liver stiffness, as measured by MR elastography (MRE), is well-accepted as a surrogate marker of liver fibrosis.

Purpose: To develop and validate deep learning (DL) models for predicting MRE-derived liver stiffness using routine clinical non-contrast abdominal T1-weighted (T1w) and T2-weighted (T2w) data from multiple institutions/system manufacturers in pediatric and adult patients.

Materials and methods: We identified pediatric and adult patients with known or suspected CLD from four institutions, who underwent clinical MRI with MRE from 2011 to 2022. We used T1w and T2w data to train DL models for liver stiffness classification. Patients were categorized into two groups for binary classification using liver stiffness thresholds (≥ 2.5 kPa, ≥ 3.0 kPa, ≥ 3.5 kPa, ≥ 4 kPa, or ≥ 5 kPa), reflecting various degrees of liver stiffening.

Results: We identified 4695 MRI examinations from 4295 patients (mean ± SD age, 47.6 ± 18.7 years; 428 (10.0%) pediatric; 2159 males [50.2%]). With a primary liver stiffness threshold of 3.0 kPa, our model correctly classified patients into no/minimal (< 3.0 kPa) vs moderate/severe (≥ 3.0 kPa) liver stiffness with AUROCs of 0.83 (95% CI: 0.82, 0.84) in our internal multi-site cross-validation (CV) experiment, 0.82 (95% CI: 0.80, 0.84) in our temporal hold-out validation experiment, and 0.79 (95% CI: 0.75, 0.81) in our external leave-one-site-out CV experiment. The developed model is publicly available ( https://github.com/almahdir1/Multi-channel-DeepLiverNet2.0.git ).

Conclusion: Our DL models exhibited reasonable diagnostic performance for categorical classification of liver stiffness on a large diverse dataset using T1w and T2w MRI data.

Key points: Question Can DL models accurately predict liver stiffness using routine clinical biparametric MRI in pediatric and adult patients with CLD? Findings DeepLiverNet2.0 used biparametric MRI data to classify liver stiffness, achieving AUROCs of 0.83, 0.82, and 0.79 for multi-site CV, hold-out validation, and external CV. Clinical relevance Our DeepLiverNet2.0 AI model can categorically classify the severity of liver stiffening using anatomic biparametric MR images in children and young adults. Model refinements and incorporation of clinical features may decrease the need for MRE.

使用腹部双参数MRI预测肝脏硬度的深度学习模型的多站点、多供应商开发和验证。
背景:慢性肝病(CLD)是世界范围内发病率和死亡率的重要原因。肝硬度,通过磁共振弹性成像(MRE)测量,被广泛接受为肝纤维化的替代标志物。目的:开发和验证深度学习(DL)模型,利用来自多个机构/系统制造商的儿科和成人患者的常规临床非对比腹部t1加权(T1w)和t2加权(T2w)数据预测mre衍生的肝脏硬度。材料和方法:我们从2011年至2022年在四家医院接受了临床MRI和MRE检查的已知或疑似CLD的儿童和成人患者。我们使用T1w和T2w数据训练DL模型用于肝脏硬度分类。根据肝脏僵硬阈值(≥2.5 kPa、≥3.0 kPa、≥3.5 kPa、≥4 kPa、≥5 kPa)将患者分为两组,以反映不同程度的肝脏僵硬。结果:我们从4295例患者(平均±SD年龄,47.6±18.7岁;儿科428例(10.0%);男性2159人[50.2%])。基于3.0 kPa的原发性肝僵硬阈值,我们的模型正确地将患者分为无/最小(结论:我们的DL模型在使用T1w和T2w MRI数据的大型多样化数据集上对肝僵硬的分类分类表现出合理的诊断性能。DL模型能否通过常规临床双参数MRI准确预测儿童和成人CLD患者的肝脏硬度?DeepLiverNet2.0使用双参数MRI数据对肝脏硬度进行分类,多位点CV、保留验证和外部CV的auroc分别为0.83、0.82和0.79。我们的DeepLiverNet2.0人工智能模型可以使用儿童和年轻人的解剖双参数MR图像对肝脏硬化的严重程度进行分类。模型的改进和临床特征的结合可能会减少对MRE的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Radiology
European Radiology 医学-核医学
CiteScore
11.60
自引率
8.50%
发文量
874
审稿时长
2-4 weeks
期刊介绍: European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field. This is the Journal of the European Society of Radiology, and the official journal of a number of societies. From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信