Jose Moon, Jong-Ho Kim, Soon Jun Hong, Cheol Woong Yu, Yong Hyun Kim, Eung Ju Kim, Jung-Joon Cha, Hyung Joon Joo
{"title":"Deep learning model for identifying acute heart failure patients using electrocardiography in the emergency room.","authors":"Jose Moon, Jong-Ho Kim, Soon Jun Hong, Cheol Woong Yu, Yong Hyun Kim, Eung Ju Kim, Jung-Joon Cha, Hyung Joon Joo","doi":"10.1093/ehjacc/zuaf001","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute heart failure (AHF) poses significant diagnostic challenges in the emergency room (ER) because of its varied clinical presentation and limitations of traditional diagnostic methods. This study aimed to develop and evaluate a deep-learning model using electrocardiogram (ECG) data to enhance AHF identification in the ER.</p><p><strong>Methods: </strong>In this retrospective cohort study, we analyzed the ECG data of 19,285 patients who visited ERs of three hospitals between 2016 and 2020; 9,119 with available left ventricular ejection fraction and N-terminal prohormone of brain natriuretic peptide level data and who were diagnosed with AHF were included in the study. We extracted morphological and clinical parameters from ECG data to train and validate four machine learning models: baseline linear regression and more advanced models including XGBoost, Light GBM, and CatBoost.</p><p><strong>Results: </strong>The CatBoost algorithm outperformed other models, showing superior area under the receiver operating characteristic and area under the precision-recall curve diagnostic accuracy across both internal (0.89 ± 0.01 and 0.89 ± 0.01) and external (0.90 and 0.89) validation datasets, respectively. The model demonstrated high accuracy, precision, recall, and f1 score, indicating robust performance in AHF identification.</p><p><strong>Conclusion: </strong>The developed machine learning model significantly enhanced AHF detection in the ER using conventional 12-lead ECGs combined with clinical data. These findings suggest that ECGs, a common tool in the ER, can effectively help screen for AHF.</p>","PeriodicalId":11861,"journal":{"name":"European Heart Journal: Acute Cardiovascular Care","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal: Acute Cardiovascular Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ehjacc/zuaf001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Acute heart failure (AHF) poses significant diagnostic challenges in the emergency room (ER) because of its varied clinical presentation and limitations of traditional diagnostic methods. This study aimed to develop and evaluate a deep-learning model using electrocardiogram (ECG) data to enhance AHF identification in the ER.
Methods: In this retrospective cohort study, we analyzed the ECG data of 19,285 patients who visited ERs of three hospitals between 2016 and 2020; 9,119 with available left ventricular ejection fraction and N-terminal prohormone of brain natriuretic peptide level data and who were diagnosed with AHF were included in the study. We extracted morphological and clinical parameters from ECG data to train and validate four machine learning models: baseline linear regression and more advanced models including XGBoost, Light GBM, and CatBoost.
Results: The CatBoost algorithm outperformed other models, showing superior area under the receiver operating characteristic and area under the precision-recall curve diagnostic accuracy across both internal (0.89 ± 0.01 and 0.89 ± 0.01) and external (0.90 and 0.89) validation datasets, respectively. The model demonstrated high accuracy, precision, recall, and f1 score, indicating robust performance in AHF identification.
Conclusion: The developed machine learning model significantly enhanced AHF detection in the ER using conventional 12-lead ECGs combined with clinical data. These findings suggest that ECGs, a common tool in the ER, can effectively help screen for AHF.
期刊介绍:
The European Heart Journal - Acute Cardiovascular Care (EHJ-ACVC) offers a unique integrative approach by combining the expertise of the different sub specialties of cardiology, emergency and intensive care medicine in the management of patients with acute cardiovascular syndromes.
Reading through the journal, cardiologists and all other healthcare professionals can access continuous updates that may help them to improve the quality of care and the outcome for patients with acute cardiovascular diseases.