Sleep Stage Classification Through HRV, Complexity Measures, and Heart Rate Asymmetry Using Generalized Estimating Equations Models.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-12-16 DOI:10.3390/e26121100
Bartosz Biczuk, Sebastian Żurek, Szymon Jurga, Elżbieta Turska, Przemysław Guzik, Jarosław Piskorski
{"title":"Sleep Stage Classification Through HRV, Complexity Measures, and Heart Rate Asymmetry Using Generalized Estimating Equations Models.","authors":"Bartosz Biczuk, Sebastian Żurek, Szymon Jurga, Elżbieta Turska, Przemysław Guzik, Jarosław Piskorski","doi":"10.3390/e26121100","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates whether heart rate asymmetry (HRA) parameters offer insights into sleep stages beyond those provided by conventional heart rate variability (HRV) and complexity measures. Utilizing 31 polysomnographic recordings, we focused exclusively on electrocardiogram (ECG) data, specifically the RR interval time series, to explore heart rate dynamics associated with different sleep stages. Employing both statistical techniques and machine learning models, with the Generalized Estimating Equation model as the foundational approach, we assessed the effectiveness of HRA in identifying and differentiating sleep stages and transitions. The models including asymmetric variables for detecting deep sleep stages, N2 and N3, achieved AUCs of 0.85 and 0.89, respectively, those for transitions N2-R, R-N2, i.e., falling in and out of REM sleep, achieved AUCs of 0.85 and 0.80, and those for W-N1, i.e., falling asleep, an AUC of 0.83. All these models were highly statistically significant. The findings demonstrate that HRA parameters provide significant, independent information about sleep stages that is not captured by HRV and complexity measures alone. This additional insight into sleep physiology potentially leads to a better understanding of hearth rhythm during sleep and devising more precise diagnostic tools, including cheap portable devices, for identifying sleep-related disorders.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675681/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121100","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates whether heart rate asymmetry (HRA) parameters offer insights into sleep stages beyond those provided by conventional heart rate variability (HRV) and complexity measures. Utilizing 31 polysomnographic recordings, we focused exclusively on electrocardiogram (ECG) data, specifically the RR interval time series, to explore heart rate dynamics associated with different sleep stages. Employing both statistical techniques and machine learning models, with the Generalized Estimating Equation model as the foundational approach, we assessed the effectiveness of HRA in identifying and differentiating sleep stages and transitions. The models including asymmetric variables for detecting deep sleep stages, N2 and N3, achieved AUCs of 0.85 and 0.89, respectively, those for transitions N2-R, R-N2, i.e., falling in and out of REM sleep, achieved AUCs of 0.85 and 0.80, and those for W-N1, i.e., falling asleep, an AUC of 0.83. All these models were highly statistically significant. The findings demonstrate that HRA parameters provide significant, independent information about sleep stages that is not captured by HRV and complexity measures alone. This additional insight into sleep physiology potentially leads to a better understanding of hearth rhythm during sleep and devising more precise diagnostic tools, including cheap portable devices, for identifying sleep-related disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信