Bartosz Biczuk, Sebastian Żurek, Szymon Jurga, Elżbieta Turska, Przemysław Guzik, Jarosław Piskorski
{"title":"Sleep Stage Classification Through HRV, Complexity Measures, and Heart Rate Asymmetry Using Generalized Estimating Equations Models.","authors":"Bartosz Biczuk, Sebastian Żurek, Szymon Jurga, Elżbieta Turska, Przemysław Guzik, Jarosław Piskorski","doi":"10.3390/e26121100","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates whether heart rate asymmetry (HRA) parameters offer insights into sleep stages beyond those provided by conventional heart rate variability (HRV) and complexity measures. Utilizing 31 polysomnographic recordings, we focused exclusively on electrocardiogram (ECG) data, specifically the RR interval time series, to explore heart rate dynamics associated with different sleep stages. Employing both statistical techniques and machine learning models, with the Generalized Estimating Equation model as the foundational approach, we assessed the effectiveness of HRA in identifying and differentiating sleep stages and transitions. The models including asymmetric variables for detecting deep sleep stages, N2 and N3, achieved AUCs of 0.85 and 0.89, respectively, those for transitions N2-R, R-N2, i.e., falling in and out of REM sleep, achieved AUCs of 0.85 and 0.80, and those for W-N1, i.e., falling asleep, an AUC of 0.83. All these models were highly statistically significant. The findings demonstrate that HRA parameters provide significant, independent information about sleep stages that is not captured by HRV and complexity measures alone. This additional insight into sleep physiology potentially leads to a better understanding of hearth rhythm during sleep and devising more precise diagnostic tools, including cheap portable devices, for identifying sleep-related disorders.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675681/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121100","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates whether heart rate asymmetry (HRA) parameters offer insights into sleep stages beyond those provided by conventional heart rate variability (HRV) and complexity measures. Utilizing 31 polysomnographic recordings, we focused exclusively on electrocardiogram (ECG) data, specifically the RR interval time series, to explore heart rate dynamics associated with different sleep stages. Employing both statistical techniques and machine learning models, with the Generalized Estimating Equation model as the foundational approach, we assessed the effectiveness of HRA in identifying and differentiating sleep stages and transitions. The models including asymmetric variables for detecting deep sleep stages, N2 and N3, achieved AUCs of 0.85 and 0.89, respectively, those for transitions N2-R, R-N2, i.e., falling in and out of REM sleep, achieved AUCs of 0.85 and 0.80, and those for W-N1, i.e., falling asleep, an AUC of 0.83. All these models were highly statistically significant. The findings demonstrate that HRA parameters provide significant, independent information about sleep stages that is not captured by HRV and complexity measures alone. This additional insight into sleep physiology potentially leads to a better understanding of hearth rhythm during sleep and devising more precise diagnostic tools, including cheap portable devices, for identifying sleep-related disorders.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.