A Definition of a Heywood Case in Item Response Theory Based on Fisher Information.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-12-14 DOI:10.3390/e26121096
Jay Verkuilen, Peter J Johnson
{"title":"A Definition of a Heywood Case in Item Response Theory Based on Fisher Information.","authors":"Jay Verkuilen, Peter J Johnson","doi":"10.3390/e26121096","DOIUrl":null,"url":null,"abstract":"<p><p>Heywood cases and other improper solutions occur frequently in latent variable models, e.g., factor analysis, item response theory, latent class analysis, multilevel models, or structural equation models, all of which are models with response variables taken from an exponential family. They have important consequences for scoring with the latent variable model and are indicative of issues in a model, such as poor identification or model misspecification. In the context of the 2PL and 3PL models in IRT, they are more frequently known as Guttman items and are identified by having a discrimination parameter that is deemed excessively large. Other IRT models, such as the newer asymmetric item response theory (AsymIRT) or polytomous IRT models often have parameters that are not easy to interpret directly, so scanning parameter estimates are not necessarily indicative of the presence of problematic values. The graphical examination of the IRF can be useful but is necessarily subjective and highly dependent on choices of graphical defaults. We propose using the derivatives of the IRF, item Fisher information functions, and our proposed Item Fraction of Total Information (IFTI) decomposition metric to bypass the parameters, allowing for the more concrete and consistent identification of Heywood cases. We illustrate the approach by using empirical examples by using AsymIRT and nominal response models.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121096","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heywood cases and other improper solutions occur frequently in latent variable models, e.g., factor analysis, item response theory, latent class analysis, multilevel models, or structural equation models, all of which are models with response variables taken from an exponential family. They have important consequences for scoring with the latent variable model and are indicative of issues in a model, such as poor identification or model misspecification. In the context of the 2PL and 3PL models in IRT, they are more frequently known as Guttman items and are identified by having a discrimination parameter that is deemed excessively large. Other IRT models, such as the newer asymmetric item response theory (AsymIRT) or polytomous IRT models often have parameters that are not easy to interpret directly, so scanning parameter estimates are not necessarily indicative of the presence of problematic values. The graphical examination of the IRF can be useful but is necessarily subjective and highly dependent on choices of graphical defaults. We propose using the derivatives of the IRF, item Fisher information functions, and our proposed Item Fraction of Total Information (IFTI) decomposition metric to bypass the parameters, allowing for the more concrete and consistent identification of Heywood cases. We illustrate the approach by using empirical examples by using AsymIRT and nominal response models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信