{"title":"A Definition of a Heywood Case in Item Response Theory Based on Fisher Information.","authors":"Jay Verkuilen, Peter J Johnson","doi":"10.3390/e26121096","DOIUrl":null,"url":null,"abstract":"<p><p>Heywood cases and other improper solutions occur frequently in latent variable models, e.g., factor analysis, item response theory, latent class analysis, multilevel models, or structural equation models, all of which are models with response variables taken from an exponential family. They have important consequences for scoring with the latent variable model and are indicative of issues in a model, such as poor identification or model misspecification. In the context of the 2PL and 3PL models in IRT, they are more frequently known as Guttman items and are identified by having a discrimination parameter that is deemed excessively large. Other IRT models, such as the newer asymmetric item response theory (AsymIRT) or polytomous IRT models often have parameters that are not easy to interpret directly, so scanning parameter estimates are not necessarily indicative of the presence of problematic values. The graphical examination of the IRF can be useful but is necessarily subjective and highly dependent on choices of graphical defaults. We propose using the derivatives of the IRF, item Fisher information functions, and our proposed Item Fraction of Total Information (IFTI) decomposition metric to bypass the parameters, allowing for the more concrete and consistent identification of Heywood cases. We illustrate the approach by using empirical examples by using AsymIRT and nominal response models.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121096","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Heywood cases and other improper solutions occur frequently in latent variable models, e.g., factor analysis, item response theory, latent class analysis, multilevel models, or structural equation models, all of which are models with response variables taken from an exponential family. They have important consequences for scoring with the latent variable model and are indicative of issues in a model, such as poor identification or model misspecification. In the context of the 2PL and 3PL models in IRT, they are more frequently known as Guttman items and are identified by having a discrimination parameter that is deemed excessively large. Other IRT models, such as the newer asymmetric item response theory (AsymIRT) or polytomous IRT models often have parameters that are not easy to interpret directly, so scanning parameter estimates are not necessarily indicative of the presence of problematic values. The graphical examination of the IRF can be useful but is necessarily subjective and highly dependent on choices of graphical defaults. We propose using the derivatives of the IRF, item Fisher information functions, and our proposed Item Fraction of Total Information (IFTI) decomposition metric to bypass the parameters, allowing for the more concrete and consistent identification of Heywood cases. We illustrate the approach by using empirical examples by using AsymIRT and nominal response models.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.