Predictive Modeling of Heart Rate from Respiratory Signals at Rest in Young Healthy Humans.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-12-11 DOI:10.3390/e26121083
Carlos M Gómez, Vanesa Muñoz, Manuel Muñoz-Caracuel
{"title":"Predictive Modeling of Heart Rate from Respiratory Signals at Rest in Young Healthy Humans.","authors":"Carlos M Gómez, Vanesa Muñoz, Manuel Muñoz-Caracuel","doi":"10.3390/e26121083","DOIUrl":null,"url":null,"abstract":"<p><p>Biological signals such as respiration (RSP) and heart rate (HR) are oscillatory and physiologically coupled, maintaining homeostasis through regulatory mechanisms. This report models the dynamic relationship between RSP and HR in 45 healthy volunteers at rest. Cross-correlation between RSP and HR was computed, along with regression analysis to predict HR from RSP and its first-order time derivative in continuous signals. A simulation model tested the possibility of replicating the RSP-HR relationship. Cross-correlation results showed a time lag in the sub-second range of these signals (849.21 ms ± SD 344.84). The possible modulation of HR by RSP was mediated by the RSP amplitude and its first-order time derivative (in 45 of 45 cases). A simulation of this process allowed us to replicate the physiological relationship between RSP and HR. These results provide support for understanding the dynamic interactions in cardiorespiratory coupling at rest, showing a short time lag between RSP and HR and a modulation of the HR signal by the first-order time derivative of the RSP. This dynamic would optionally be incorporated into dynamic models of resting cardiopulmonary coupling and suggests a mechanism for optimizing respiration in the alveolar system by promoting synchrony between the gases and hemoglobin in the alveolar pulmonary system.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121083","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biological signals such as respiration (RSP) and heart rate (HR) are oscillatory and physiologically coupled, maintaining homeostasis through regulatory mechanisms. This report models the dynamic relationship between RSP and HR in 45 healthy volunteers at rest. Cross-correlation between RSP and HR was computed, along with regression analysis to predict HR from RSP and its first-order time derivative in continuous signals. A simulation model tested the possibility of replicating the RSP-HR relationship. Cross-correlation results showed a time lag in the sub-second range of these signals (849.21 ms ± SD 344.84). The possible modulation of HR by RSP was mediated by the RSP amplitude and its first-order time derivative (in 45 of 45 cases). A simulation of this process allowed us to replicate the physiological relationship between RSP and HR. These results provide support for understanding the dynamic interactions in cardiorespiratory coupling at rest, showing a short time lag between RSP and HR and a modulation of the HR signal by the first-order time derivative of the RSP. This dynamic would optionally be incorporated into dynamic models of resting cardiopulmonary coupling and suggests a mechanism for optimizing respiration in the alveolar system by promoting synchrony between the gases and hemoglobin in the alveolar pulmonary system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信