{"title":"Active biomonitoring of stream ecosystems: untargeted metabolomic and proteomic responses and free radical scavenging activities in mussels.","authors":"Muhammad Rivaldi, Andri Frediansyah, Solihatun Amidan Amatul Aziz, Andhika Puspito Nugroho","doi":"10.1007/s10646-024-02846-9","DOIUrl":null,"url":null,"abstract":"<p><p>Many contaminants from scattered sources constantly endanger streams that flow through heavily inhabited areas, commercial districts, and industrial hubs. The responses of transplanted mussels in streams in active biomonitoring programs will reflect the dynamics of environmental stream conditions. This study evaluated the untargeted metabolomic and proteomic responses and free radical scavenging activities of transplanted mussels Sinanodonta woodiana in the Winongo Stream at three stations (S1, S2, S3) representing different pollution levels: low (S1), high (S2), and moderate (S3). The investigation examined untargeted metabolomic and proteomic responses in the gills and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activities in the gills, mantle, and digestive glands. Metabolomic analysis revealed a clear separation between mussel responses from the three stations after 28 days of exposure, with specific metabolites responding to different pollution levels. Proteomic analysis identified β-Actin protein in all stations. The β-Actin protein sequence of unexposed mussels had coverage of 17%, and increased to 23% at S1 on day 28 and 34% at S2 and S3 on day 28. All tissues showed increased DPPH and ABTS activities from day 3 to day 28, mainly in stations S2 and S3. These findings underscore the impact of pollution levels on the metabolomic and proteomic responses of S. woodiana and the importance of these discoveries as early indicators (biomarkers) of long-term aquatic environmental problems. In the face of current environmental challenges, this research raises concerns about the health of water bodies. It underscores the importance of developing robust, standardized, and dependable analytical techniques for monitoring the health of aquatic environments.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02846-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many contaminants from scattered sources constantly endanger streams that flow through heavily inhabited areas, commercial districts, and industrial hubs. The responses of transplanted mussels in streams in active biomonitoring programs will reflect the dynamics of environmental stream conditions. This study evaluated the untargeted metabolomic and proteomic responses and free radical scavenging activities of transplanted mussels Sinanodonta woodiana in the Winongo Stream at three stations (S1, S2, S3) representing different pollution levels: low (S1), high (S2), and moderate (S3). The investigation examined untargeted metabolomic and proteomic responses in the gills and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activities in the gills, mantle, and digestive glands. Metabolomic analysis revealed a clear separation between mussel responses from the three stations after 28 days of exposure, with specific metabolites responding to different pollution levels. Proteomic analysis identified β-Actin protein in all stations. The β-Actin protein sequence of unexposed mussels had coverage of 17%, and increased to 23% at S1 on day 28 and 34% at S2 and S3 on day 28. All tissues showed increased DPPH and ABTS activities from day 3 to day 28, mainly in stations S2 and S3. These findings underscore the impact of pollution levels on the metabolomic and proteomic responses of S. woodiana and the importance of these discoveries as early indicators (biomarkers) of long-term aquatic environmental problems. In the face of current environmental challenges, this research raises concerns about the health of water bodies. It underscores the importance of developing robust, standardized, and dependable analytical techniques for monitoring the health of aquatic environments.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.