In-vitro, In-silico Investigations Reveals Potential Cytotoxic Activity of Fermentation Metabolites from Actinomycetes Isolated from Lonar Soda Lake Against HeLa Cancer Cell Lines.
{"title":"<i>In-vitro, In-silico</i> Investigations Reveals Potential Cytotoxic Activity of Fermentation Metabolites from Actinomycetes Isolated from Lonar Soda Lake Against HeLa Cancer Cell Lines.","authors":"Pradip Bawane, Santosh Yele","doi":"10.2174/0113892037334392241216074545","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Actinomycetes, Gram-positive bacteria, are recognized for producing bioactive metabolites. Lonar Soda Lake, an alkaline ecosystem, hosts diverse actinomycetes with possible anticancer activities.</p><p><strong>Aim: </strong>To assess the cytotoxic potential of fermentation metabolites from actinomycetes isolated from Lonar Soda Lake against HeLa cancer cells employing <i>in-vitro</i> and <i>in-silico</i> methods.</p><p><strong>Objectives: </strong>Evaluate the cytotoxicity of fermentation metabolites from Lonar Lake actinomycetes on HeLa cells. Execute molecular docking to forecast metabolite connections with cancer-related proteins.</p><p><strong>Materials and methods: </strong>The actinomycetes were isolated from the sediment sample of Lonar Lake using a selective medium and recognized by gene sequencing. Cytotoxicity on HeLa cells was assessed using the MTT assay, in consort with oxidative stress and apoptotic markers (GSH, MDA, TNF-α, and caspase 3). Molecular docking and molecular dynamics studies evaluated metabolite binding to cancer-related proteins (Bcl-2, TNF-α, caspase 3).</p><p><strong>Results: </strong>Fermentation metabolites of three Lonar Lake Sediment isolates (LLSD), LLSD-5, LLSD- 7, and LLSD-9 showing promising cytotoxic activity against HeLa cell lines by MTT assay, also significantly modulate the oxidative stress parameters (GSH, MDA), and cell apoptotic marker (TNF-α, caspase 3). IC50 values were 82.9 μg/ml (LLSD-5), 162.3 μg/ml (LLSD-7), and 20.15 μg/ml (LLSD-9). Furthermore, molecular docking displayed robust binding affinities to cancer-related proteins, uncovering the possible mechanism of action.</p><p><strong>Conclusion: </strong>The fermentation metabolites actinomycete isolates from Lonar Lake exhibit significant cytotoxic activity against HeLa cancer cell lines. Both <i>in-vitro</i> and <i>in-silico</i> analyses support the potential of these metabolites as anticancer agents.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037334392241216074545","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Actinomycetes, Gram-positive bacteria, are recognized for producing bioactive metabolites. Lonar Soda Lake, an alkaline ecosystem, hosts diverse actinomycetes with possible anticancer activities.
Aim: To assess the cytotoxic potential of fermentation metabolites from actinomycetes isolated from Lonar Soda Lake against HeLa cancer cells employing in-vitro and in-silico methods.
Objectives: Evaluate the cytotoxicity of fermentation metabolites from Lonar Lake actinomycetes on HeLa cells. Execute molecular docking to forecast metabolite connections with cancer-related proteins.
Materials and methods: The actinomycetes were isolated from the sediment sample of Lonar Lake using a selective medium and recognized by gene sequencing. Cytotoxicity on HeLa cells was assessed using the MTT assay, in consort with oxidative stress and apoptotic markers (GSH, MDA, TNF-α, and caspase 3). Molecular docking and molecular dynamics studies evaluated metabolite binding to cancer-related proteins (Bcl-2, TNF-α, caspase 3).
Results: Fermentation metabolites of three Lonar Lake Sediment isolates (LLSD), LLSD-5, LLSD- 7, and LLSD-9 showing promising cytotoxic activity against HeLa cell lines by MTT assay, also significantly modulate the oxidative stress parameters (GSH, MDA), and cell apoptotic marker (TNF-α, caspase 3). IC50 values were 82.9 μg/ml (LLSD-5), 162.3 μg/ml (LLSD-7), and 20.15 μg/ml (LLSD-9). Furthermore, molecular docking displayed robust binding affinities to cancer-related proteins, uncovering the possible mechanism of action.
Conclusion: The fermentation metabolites actinomycete isolates from Lonar Lake exhibit significant cytotoxic activity against HeLa cancer cell lines. Both in-vitro and in-silico analyses support the potential of these metabolites as anticancer agents.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.