Imani Madison, Miguel Moreno-Risueno, Rosangela Sozzani
{"title":"Advancing plant science through precision 3D bioprinting: new tools for research and biotech applications.","authors":"Imani Madison, Miguel Moreno-Risueno, Rosangela Sozzani","doi":"10.1016/j.copbio.2024.103250","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of 3D bioprinting into plant science and biotechnology is revolutionizing research and applications. While many high-throughput techniques have advanced plant biology, replicating the complex 3D organization and cellular environments of plant tissues remains a significant challenge. Traditional 2D culture systems fall short of capturing the necessary spatial context for accurate studies of cell behavior, gene expression, and tissue development. Additionally, the lack of precise simulation of plant microenvironments limits control over cellular interactions and responses to external stimuli. Recent advancements in 3D bioprinting address these limitations by allowing precise control over cell positioning and biomaterial arrangement, thereby better replicating natural plant environments. This enables more accurate studies of gene expression, developmental processes, and stress responses. The technology also enhances our ability to test genetic modifications and biotechnological interventions, advancing crop improvement, sustainable agriculture, and precision breeding. This review examines the current state of 3D bioprinting in plant science, discusses its limitations, and explores its potential to transform research and applications in the field.</p>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"91 ","pages":"103250"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.copbio.2024.103250","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of 3D bioprinting into plant science and biotechnology is revolutionizing research and applications. While many high-throughput techniques have advanced plant biology, replicating the complex 3D organization and cellular environments of plant tissues remains a significant challenge. Traditional 2D culture systems fall short of capturing the necessary spatial context for accurate studies of cell behavior, gene expression, and tissue development. Additionally, the lack of precise simulation of plant microenvironments limits control over cellular interactions and responses to external stimuli. Recent advancements in 3D bioprinting address these limitations by allowing precise control over cell positioning and biomaterial arrangement, thereby better replicating natural plant environments. This enables more accurate studies of gene expression, developmental processes, and stress responses. The technology also enhances our ability to test genetic modifications and biotechnological interventions, advancing crop improvement, sustainable agriculture, and precision breeding. This review examines the current state of 3D bioprinting in plant science, discusses its limitations, and explores its potential to transform research and applications in the field.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.