Youssef M Hassan, Ahmed S Mohamed, Yaser M Hassan, Wael M El-Sayed
{"title":"Recent developments and future directions in point-of-care next-generation CRISPR-based rapid diagnosis.","authors":"Youssef M Hassan, Ahmed S Mohamed, Yaser M Hassan, Wael M El-Sayed","doi":"10.1007/s10238-024-01540-8","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for sensitive, rapid, and affordable diagnostic techniques has surged, particularly following the COVID-19 pandemic, driving the development of CRISPR-based diagnostic tools that utilize Cas effector proteins (such as Cas9, Cas12, and Cas13) as viable alternatives to traditional nucleic acid-based detection methods. These CRISPR systems, often integrated with biosensing and amplification technologies, provide precise, rapid, and portable diagnostics, making on-site testing without the need for extensive infrastructure feasible, especially in underserved or rural areas. In contrast, traditional diagnostic methods, while still essential, are often limited by the need for costly equipment and skilled operators, restricting their accessibility. As a result, developing accessible, user-friendly solutions for at-home, field, and laboratory diagnostics has become a key focus in CRISPR diagnostic innovations. This review examines the current state of CRISPR-based diagnostics and their potential applications across a wide range of diseases, including cancers (e.g., colorectal and breast cancer), genetic disorders (e.g., sickle cell disease), and infectious diseases (e.g., tuberculosis, malaria, Zika virus, and human papillomavirus). Additionally, the integration of machine learning (ML) and artificial intelligence (AI) to enhance the accuracy, scalability, and efficiency of CRISPR diagnostics is discussed, alongside the challenges of incorporating CRISPR technologies into point-of-care settings. The review also explores the potential for these cutting-edge tools to revolutionize disease diagnosis and personalized treatment in the future, while identifying the challenges and future directions necessary to address existing gaps in CRISPR-based diagnostic research.</p>","PeriodicalId":10337,"journal":{"name":"Clinical and Experimental Medicine","volume":"25 1","pages":"33"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717804/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10238-024-01540-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for sensitive, rapid, and affordable diagnostic techniques has surged, particularly following the COVID-19 pandemic, driving the development of CRISPR-based diagnostic tools that utilize Cas effector proteins (such as Cas9, Cas12, and Cas13) as viable alternatives to traditional nucleic acid-based detection methods. These CRISPR systems, often integrated with biosensing and amplification technologies, provide precise, rapid, and portable diagnostics, making on-site testing without the need for extensive infrastructure feasible, especially in underserved or rural areas. In contrast, traditional diagnostic methods, while still essential, are often limited by the need for costly equipment and skilled operators, restricting their accessibility. As a result, developing accessible, user-friendly solutions for at-home, field, and laboratory diagnostics has become a key focus in CRISPR diagnostic innovations. This review examines the current state of CRISPR-based diagnostics and their potential applications across a wide range of diseases, including cancers (e.g., colorectal and breast cancer), genetic disorders (e.g., sickle cell disease), and infectious diseases (e.g., tuberculosis, malaria, Zika virus, and human papillomavirus). Additionally, the integration of machine learning (ML) and artificial intelligence (AI) to enhance the accuracy, scalability, and efficiency of CRISPR diagnostics is discussed, alongside the challenges of incorporating CRISPR technologies into point-of-care settings. The review also explores the potential for these cutting-edge tools to revolutionize disease diagnosis and personalized treatment in the future, while identifying the challenges and future directions necessary to address existing gaps in CRISPR-based diagnostic research.
期刊介绍:
Clinical and Experimental Medicine (CEM) is a multidisciplinary journal that aims to be a forum of scientific excellence and information exchange in relation to the basic and clinical features of the following fields: hematology, onco-hematology, oncology, virology, immunology, and rheumatology. The journal publishes reviews and editorials, experimental and preclinical studies, translational research, prospectively designed clinical trials, and epidemiological studies. Papers containing new clinical or experimental data that are likely to contribute to changes in clinical practice or the way in which a disease is thought about will be given priority due to their immediate importance. Case reports will be accepted on an exceptional basis only, and their submission is discouraged. The major criteria for publication are clarity, scientific soundness, and advances in knowledge. In compliance with the overwhelmingly prevailing request by the international scientific community, and with respect for eco-compatibility issues, CEM is now published exclusively online.