Spike frequency adaptation in primate lateral prefrontal cortex neurons results from interplay between intrinsic properties and circuit dynamics.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Cell reports Pub Date : 2025-01-28 Epub Date: 2025-01-06 DOI:10.1016/j.celrep.2024.115159
Nils A Koch, Benjamin W Corrigan, Michael Feyerabend, Roberto A Gulli, Michelle S Jimenez-Sosa, Mohamad Abbass, Julia K Sunstrum, Sara Matovic, Megan Roussy, Rogelio Luna, Samuel A Mestern, Borna Mahmoudian, Susheel Vijayraghavan, Hiroyuki Igarashi, Kartik S Pradeepan, William J Assis, J Andrew Pruszynski, Shreejoy Tripathy, Jochen F Staiger, Guillermo Gonzalez-Burgos, Andreas Neef, Stefan Treue, Stefan Everling, Wataru Inoue, Anmar Khadra, Julio C Martinez-Trujillo
{"title":"Spike frequency adaptation in primate lateral prefrontal cortex neurons results from interplay between intrinsic properties and circuit dynamics.","authors":"Nils A Koch, Benjamin W Corrigan, Michael Feyerabend, Roberto A Gulli, Michelle S Jimenez-Sosa, Mohamad Abbass, Julia K Sunstrum, Sara Matovic, Megan Roussy, Rogelio Luna, Samuel A Mestern, Borna Mahmoudian, Susheel Vijayraghavan, Hiroyuki Igarashi, Kartik S Pradeepan, William J Assis, J Andrew Pruszynski, Shreejoy Tripathy, Jochen F Staiger, Guillermo Gonzalez-Burgos, Andreas Neef, Stefan Treue, Stefan Everling, Wataru Inoue, Anmar Khadra, Julio C Martinez-Trujillo","doi":"10.1016/j.celrep.2024.115159","DOIUrl":null,"url":null,"abstract":"<p><p>Cortical neurons in brain slices display intrinsic spike frequency adaptation (I-SFA) to constant current inputs, while extracellular recordings show extrinsic SFA (E-SFA) during sustained visual stimulation. Inferring how I-SFA contributes to E-SFA during behavior is challenging due to the isolated nature of slice recordings. To address this, we recorded macaque lateral prefrontal cortex (LPFC) neurons in vivo during a visually guided saccade task and in vitro in brain slices. Broad-spiking (BS) putative pyramidal cells and narrow-spiking (NS) putative inhibitory interneurons exhibit both E-SFA and I-SFA. Developing a data-driven hybrid circuit model comprising NS model neurons receiving BS input reveals that NS model neurons exhibit longer SFA than observed in vivo; however, adding feedforward inhibition corrects this in a manner dependent on I-SFA. Identification of this circuit motif shaping E-SFA in LPFC highlights the roles of both intrinsic and network mechanisms in neural activity underlying behavior.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 1","pages":"115159"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115159","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cortical neurons in brain slices display intrinsic spike frequency adaptation (I-SFA) to constant current inputs, while extracellular recordings show extrinsic SFA (E-SFA) during sustained visual stimulation. Inferring how I-SFA contributes to E-SFA during behavior is challenging due to the isolated nature of slice recordings. To address this, we recorded macaque lateral prefrontal cortex (LPFC) neurons in vivo during a visually guided saccade task and in vitro in brain slices. Broad-spiking (BS) putative pyramidal cells and narrow-spiking (NS) putative inhibitory interneurons exhibit both E-SFA and I-SFA. Developing a data-driven hybrid circuit model comprising NS model neurons receiving BS input reveals that NS model neurons exhibit longer SFA than observed in vivo; however, adding feedforward inhibition corrects this in a manner dependent on I-SFA. Identification of this circuit motif shaping E-SFA in LPFC highlights the roles of both intrinsic and network mechanisms in neural activity underlying behavior.

灵长类动物外侧前额叶皮层神经元的脉冲频率适应是内在特性和电路动力学相互作用的结果。
大脑皮层神经元对恒流输入表现出内在的峰值频率适应(I-SFA),而细胞外记录显示在持续视觉刺激下的外源性峰值频率适应(E-SFA)。由于切片记录的孤立性,推断I-SFA在行为期间如何影响E-SFA是具有挑战性的。为了解决这个问题,我们在视觉引导的扫视任务中记录了猕猴体内外侧前额叶皮层(LPFC)神经元和体外脑切片。宽尖峰(BS)推定的锥体细胞和窄尖峰(NS)推定的抑制性中间神经元同时表现出E-SFA和I-SFA。建立由接受BS输入的NS模型神经元组成的数据驱动混合电路模型表明,NS模型神经元的SFA比体内观察到的更长;然而,添加前馈抑制以依赖于I-SFA的方式纠正了这一点。在LPFC中形成E-SFA的电路基序的识别突出了内在机制和网络机制在神经活动潜在行为中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信