Local Administration of (-)-Epigallocatechin-3-Gallate as a Local Anesthetic Agent Inhibits the Excitability of Rat Nociceptive Primary Sensory Neurons.
Syogo Utugi, Risako Chida, Sana Yamaguchi, Yukito Sashide, Mamoru Takeda
{"title":"Local Administration of (-)-Epigallocatechin-3-Gallate as a Local Anesthetic Agent Inhibits the Excitability of Rat Nociceptive Primary Sensory Neurons.","authors":"Syogo Utugi, Risako Chida, Sana Yamaguchi, Yukito Sashide, Mamoru Takeda","doi":"10.3390/cells14010052","DOIUrl":null,"url":null,"abstract":"<p><p>While the impact of (-)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli. Following the administration of EGCG, the mean firing rate of TG neurons to both non-noxious and noxious mechanical stimuli significantly decreased in a dose-dependent manner (1-10 mM), and both the non-noxious and nociceptive mechanical stimuli experienced the maximum suppression of discharge frequency within 5 min. These inhibitory effects lasted for approximately 20 min. These findings suggest that the local injection of EGCG into the peripheral receptive field suppresses the responsiveness of nociceptive primary sensory neurons in the TG, almost equal to that of the local anesthetic, 1% lidocaine. As a result, the local application of EGCG as a local anesthetic could alleviate nociceptive trigeminal pain that does not result in side effects, thereby playing a significant role in pain management.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720243/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14010052","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While the impact of (-)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli. Following the administration of EGCG, the mean firing rate of TG neurons to both non-noxious and noxious mechanical stimuli significantly decreased in a dose-dependent manner (1-10 mM), and both the non-noxious and nociceptive mechanical stimuli experienced the maximum suppression of discharge frequency within 5 min. These inhibitory effects lasted for approximately 20 min. These findings suggest that the local injection of EGCG into the peripheral receptive field suppresses the responsiveness of nociceptive primary sensory neurons in the TG, almost equal to that of the local anesthetic, 1% lidocaine. As a result, the local application of EGCG as a local anesthetic could alleviate nociceptive trigeminal pain that does not result in side effects, thereby playing a significant role in pain management.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.