Predicting 28-day all-cause mortality in patients admitted to intensive care units with pre-existing chronic heart failure using the stress hyperglycemia ratio: a machine learning-driven retrospective cohort analysis.

IF 8.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Xiao-Han Li, Xing-Long Yang, Bin-Bin Dong, Qi Liu
{"title":"Predicting 28-day all-cause mortality in patients admitted to intensive care units with pre-existing chronic heart failure using the stress hyperglycemia ratio: a machine learning-driven retrospective cohort analysis.","authors":"Xiao-Han Li, Xing-Long Yang, Bin-Bin Dong, Qi Liu","doi":"10.1186/s12933-025-02577-z","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic heart failure (CHF) poses a significant threat to human health. The stress hyperglycemia ratio (SHR) is a novel metric for accurately assessing stress hyperglycemia, which has been correlated with adverse outcomes in various major diseases. However, it remains unclear whether SHR is associated with 28-day mortality in patients with pre-existing CHF who were admitted to intensive care units (ICUs). This study retrospectively recruited patients who were admitted to ICUs with both acute critical illness and pre-existing CHF from the Medical Information Mart for Intensive Care (MIMIC) database. Characteristics were compared between the survival and non-survival groups. The relationship between SHR and 28-day all-cause mortality was analyzed using restricted cubic splines, receiver operating characteristic (ROC) curves, Kaplan-Meier survival analysis, and Cox proportional hazards regression analysis. The importance of the potential risk factors was assessed using the Boruta algorithm. Prediction models were constructed using machine learning algorithms. A total of 913 patients were enrolled. The risk of 28-day mortality increased with higher SHR levels (P < 0.001). SHR was independently associated with 28-day all-cause mortality, with an unadjusted hazard ratio (HR) of 1.45 (P < 0.001) and an adjusted HR of 1.43 (P < 0.001). Subgroup analysis found that none of the potential risk factors, such as demographics, comorbidities, and drugs, affected the relationship (P for interaction > 0.05). The area under the ROC (AUC) curve for SHR was larger than those for admission blood glucose and HbA1c; the cut-off for SHR was 0.57. Patients with SHR higher than the cut-off had a significantly lower 28-day survival probability (P < 0.001). SHR was identified as one of the key factors for 28-day mortality by the Boruta algorithm. The predictive performance was verified through four machine learning algorithms, with the neural network algorithm being the best (AUC 0.801). For patients with both acute critical illness and pre-existing CHF, SHR was an independent predictor of 28-day all-cause mortality. Its prognostic performance surpasses those of HbA1c and blood glucose, and prognostic models based on SHR provide clinicians with an effective tool to make therapeutic decisions.</p>","PeriodicalId":9374,"journal":{"name":"Cardiovascular Diabetology","volume":"24 1","pages":"10"},"PeriodicalIF":8.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714879/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Diabetology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12933-025-02577-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic heart failure (CHF) poses a significant threat to human health. The stress hyperglycemia ratio (SHR) is a novel metric for accurately assessing stress hyperglycemia, which has been correlated with adverse outcomes in various major diseases. However, it remains unclear whether SHR is associated with 28-day mortality in patients with pre-existing CHF who were admitted to intensive care units (ICUs). This study retrospectively recruited patients who were admitted to ICUs with both acute critical illness and pre-existing CHF from the Medical Information Mart for Intensive Care (MIMIC) database. Characteristics were compared between the survival and non-survival groups. The relationship between SHR and 28-day all-cause mortality was analyzed using restricted cubic splines, receiver operating characteristic (ROC) curves, Kaplan-Meier survival analysis, and Cox proportional hazards regression analysis. The importance of the potential risk factors was assessed using the Boruta algorithm. Prediction models were constructed using machine learning algorithms. A total of 913 patients were enrolled. The risk of 28-day mortality increased with higher SHR levels (P < 0.001). SHR was independently associated with 28-day all-cause mortality, with an unadjusted hazard ratio (HR) of 1.45 (P < 0.001) and an adjusted HR of 1.43 (P < 0.001). Subgroup analysis found that none of the potential risk factors, such as demographics, comorbidities, and drugs, affected the relationship (P for interaction > 0.05). The area under the ROC (AUC) curve for SHR was larger than those for admission blood glucose and HbA1c; the cut-off for SHR was 0.57. Patients with SHR higher than the cut-off had a significantly lower 28-day survival probability (P < 0.001). SHR was identified as one of the key factors for 28-day mortality by the Boruta algorithm. The predictive performance was verified through four machine learning algorithms, with the neural network algorithm being the best (AUC 0.801). For patients with both acute critical illness and pre-existing CHF, SHR was an independent predictor of 28-day all-cause mortality. Its prognostic performance surpasses those of HbA1c and blood glucose, and prognostic models based on SHR provide clinicians with an effective tool to make therapeutic decisions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Diabetology
Cardiovascular Diabetology 医学-内分泌学与代谢
CiteScore
12.30
自引率
15.10%
发文量
240
审稿时长
1 months
期刊介绍: Cardiovascular Diabetology is a journal that welcomes manuscripts exploring various aspects of the relationship between diabetes, cardiovascular health, and the metabolic syndrome. We invite submissions related to clinical studies, genetic investigations, experimental research, pharmacological studies, epidemiological analyses, and molecular biology research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信