Alantolactone mitigates the elevation of blood pressure in mice induced by angiotensin II by inhibiting calcium channel activation.

IF 2 3区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Ruqiang Yuan, Mingjing Gao, Hu Xu, Qing Liang, Lei Qian, Yali Wang, Houli Zhang, Erjiao Qiang, Weijing Yun
{"title":"Alantolactone mitigates the elevation of blood pressure in mice induced by angiotensin II by inhibiting calcium channel activation.","authors":"Ruqiang Yuan, Mingjing Gao, Hu Xu, Qing Liang, Lei Qian, Yali Wang, Houli Zhang, Erjiao Qiang, Weijing Yun","doi":"10.1186/s12872-024-04461-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The dried root of Inula helenium L., known as Inulae Radix in Mongolian medicine, is a widely used heat-clearing plant drug within the Asteraceae family. Alantolactone (ATL), a compound derived from Inulae Radix, is a sesquiterpene lactone with a range of biological activities. However, there is a lack of studies investigating its effectiveness in the treatment of hypertension. The aim of this study is to explore the regulatory effect of alantolactone on blood pressure and its underlying mechanism.</p><p><strong>Methods and results: </strong>Network pharmacology analysis suggested that ATL had a potential therapeutic effect on hypertension induced by angiotensin II (Ang II). Subsequently, the results of animal experiments demonstrated that ATL could suppress the increase in blood pressure caused by Ang II. Vascular ring experiments indicated that ATL could inhibit the vascular contractions induced by Ang II, Phenylephrine, and Ca<sup>2</sup>⁺. Further experiments demonstrated that ATL could inhibit the calcium influx induced by Ang II and increase the expression of pMLC2. Molecular docking experiments showed that ATL had a high binding affinity with L-type Voltage-gated Calcium Channels (VGCC), and vascular ring experiments indicated that ATL could significantly inhibit the vascular contractions caused by the agonists of L-type VGCC. In addition, we also observed that ATL had an ameliorative effect on the vascular remodeling induced by Ang II.</p><p><strong>Conclusions: </strong>ATL exerted an antihypertensive effect by inhibiting the activation of L-type VGCC and reducing calcium influx.</p>","PeriodicalId":9195,"journal":{"name":"BMC Cardiovascular Disorders","volume":"25 1","pages":"7"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cardiovascular Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12872-024-04461-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The dried root of Inula helenium L., known as Inulae Radix in Mongolian medicine, is a widely used heat-clearing plant drug within the Asteraceae family. Alantolactone (ATL), a compound derived from Inulae Radix, is a sesquiterpene lactone with a range of biological activities. However, there is a lack of studies investigating its effectiveness in the treatment of hypertension. The aim of this study is to explore the regulatory effect of alantolactone on blood pressure and its underlying mechanism.

Methods and results: Network pharmacology analysis suggested that ATL had a potential therapeutic effect on hypertension induced by angiotensin II (Ang II). Subsequently, the results of animal experiments demonstrated that ATL could suppress the increase in blood pressure caused by Ang II. Vascular ring experiments indicated that ATL could inhibit the vascular contractions induced by Ang II, Phenylephrine, and Ca2⁺. Further experiments demonstrated that ATL could inhibit the calcium influx induced by Ang II and increase the expression of pMLC2. Molecular docking experiments showed that ATL had a high binding affinity with L-type Voltage-gated Calcium Channels (VGCC), and vascular ring experiments indicated that ATL could significantly inhibit the vascular contractions caused by the agonists of L-type VGCC. In addition, we also observed that ATL had an ameliorative effect on the vascular remodeling induced by Ang II.

Conclusions: ATL exerted an antihypertensive effect by inhibiting the activation of L-type VGCC and reducing calcium influx.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Cardiovascular Disorders
BMC Cardiovascular Disorders CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
3.50
自引率
0.00%
发文量
480
审稿时长
1 months
期刊介绍: BMC Cardiovascular Disorders is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of disorders of the heart and circulatory system, as well as related molecular and cell biology, genetics, pathophysiology, epidemiology, and controlled trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信