Outlier Handling Strategy of Ensembled-Based Sequential Convolutional Neural Networks for Sleep Stage Classification.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Wei Zhou, Hangyu Zhu, Wei Chen, Chen Chen, Jun Xu
{"title":"Outlier Handling Strategy of Ensembled-Based Sequential Convolutional Neural Networks for Sleep Stage Classification.","authors":"Wei Zhou, Hangyu Zhu, Wei Chen, Chen Chen, Jun Xu","doi":"10.3390/bioengineering11121226","DOIUrl":null,"url":null,"abstract":"<p><p>The pivotal role of sleep has led to extensive research endeavors aimed at automatic sleep stage classification. However, existing methods perform poorly when classifying small groups or individuals, and these results are often considered outliers in terms of overall performance. These outliers may introduce bias during model training, adversely affecting feature selection and diminishing model performance. To address the above issues, this paper proposes an ensemble-based sequential convolutional neural network (E-SCNN) that incorporates a clustering module and neural networks. E-SCNN effectively ensembles machine learning and deep learning techniques to minimize outliers, thereby enhancing model robustness at the individual level. Specifically, the clustering module categorizes individuals based on similarities in feature distribution and assigns personalized weights accordingly. Subsequently, by combining these tailored weights with the robust feature extraction capabilities of convolutional neural networks, the model generates more accurate sleep stage classifications. The proposed model was verified on two public datasets, and experimental results demonstrate that the proposed method obtains overall accuracies of 84.8% on the Sleep-EDF Expanded dataset and 85.5% on the MASS dataset. E-SCNN can alleviate the outlier problem, which is important for improving sleep quality monitoring for individuals.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121226","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The pivotal role of sleep has led to extensive research endeavors aimed at automatic sleep stage classification. However, existing methods perform poorly when classifying small groups or individuals, and these results are often considered outliers in terms of overall performance. These outliers may introduce bias during model training, adversely affecting feature selection and diminishing model performance. To address the above issues, this paper proposes an ensemble-based sequential convolutional neural network (E-SCNN) that incorporates a clustering module and neural networks. E-SCNN effectively ensembles machine learning and deep learning techniques to minimize outliers, thereby enhancing model robustness at the individual level. Specifically, the clustering module categorizes individuals based on similarities in feature distribution and assigns personalized weights accordingly. Subsequently, by combining these tailored weights with the robust feature extraction capabilities of convolutional neural networks, the model generates more accurate sleep stage classifications. The proposed model was verified on two public datasets, and experimental results demonstrate that the proposed method obtains overall accuracies of 84.8% on the Sleep-EDF Expanded dataset and 85.5% on the MASS dataset. E-SCNN can alleviate the outlier problem, which is important for improving sleep quality monitoring for individuals.

基于集成的序列卷积神经网络睡眠阶段分类异常点处理策略。
睡眠的关键作用导致了广泛的研究努力,旨在自动睡眠阶段分类。然而,现有的方法在对小团体或个人进行分类时表现不佳,并且这些结果通常被认为是整体性能方面的异常值。这些异常值可能会在模型训练过程中引入偏差,对特征选择产生不利影响并降低模型性能。为了解决上述问题,本文提出了一种基于集成的序列卷积神经网络(E-SCNN),该网络结合了聚类模块和神经网络。E-SCNN有效地集成了机器学习和深度学习技术,以最小化异常值,从而增强了个体层面的模型鲁棒性。具体来说,聚类模块根据特征分布的相似性对个体进行分类,并相应地分配个性化的权重。随后,通过将这些定制的权重与卷积神经网络的强大特征提取能力相结合,该模型生成了更准确的睡眠阶段分类。在两个公共数据集上验证了该模型,实验结果表明,该方法在Sleep-EDF扩展数据集上的总体准确率为84.8%,在MASS数据集上的总体准确率为85.5%。E-SCNN可以缓解异常值问题,对改善个体睡眠质量监测具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信