Eri Maai , Mikiko Kojima , Yumiko Takebayashi , Hitoshi Sakakibara
{"title":"Chloroplast arrangement in finger millet under low-temperature conditions","authors":"Eri Maai , Mikiko Kojima , Yumiko Takebayashi , Hitoshi Sakakibara","doi":"10.1016/j.bbagen.2025.130757","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Finger millet, a C<sub>4</sub> plant with mesophyll and bundle sheath cells, has been cultivated at high altitudes in the Himalayas owing to its adaptability to stressful environments. Under environmental stresses such as high light and drought, finger millet mesophyll chloroplasts move toward the bundle sheath, a phenomenon known as aggregative arrangement.</div></div><div><h3>Methods</h3><div>To investigate the effect of low temperatures on mesophyll chloroplast arrangement in finger millet, we conducted microscopic observations and photochemical measurements using leaves treated at different temperatures in light or darkness, with or without pharmacological inhibitors. Abscisic acid (ABA) content was also quantified.</div></div><div><h3>Results</h3><div>Chloroplast aggregative arrangement was induced at 5 °C in a light- and actin-dependent manner. This response required a lower intensity of blue light than that previously observed at moderate temperatures. Low temperature significantly reduced the maximum quantum efficiency of photosystem II and increased leaf ABA content in the light. Conversely, in the absence of blue light at low temperatures or under actin-inhibited conditions, mesophyll chloroplasts exhibited a doughnut-like arrangement, characterized by a distribution away from the bundle sheath side.</div></div><div><h3>Conclusions</h3><div>In finger millet, mesophyll chloroplasts move toward the bundle sheath through a blue light and actin-based mechanism at low temperatures. The doughnut-like arrangement appears to be a contingent phenomenon that manifests when the dispersion of mesophyll chloroplasts toward the bundle sheath is impeded.</div></div><div><h3>General significance</h3><div>The aggregative arrangement is a response to various environmental stresses, including low temperatures, and may be advantageous for finger millet seedlings in mitigating photoinhibition during cool mornings.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 3","pages":"Article 130757"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525000029","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Finger millet, a C4 plant with mesophyll and bundle sheath cells, has been cultivated at high altitudes in the Himalayas owing to its adaptability to stressful environments. Under environmental stresses such as high light and drought, finger millet mesophyll chloroplasts move toward the bundle sheath, a phenomenon known as aggregative arrangement.
Methods
To investigate the effect of low temperatures on mesophyll chloroplast arrangement in finger millet, we conducted microscopic observations and photochemical measurements using leaves treated at different temperatures in light or darkness, with or without pharmacological inhibitors. Abscisic acid (ABA) content was also quantified.
Results
Chloroplast aggregative arrangement was induced at 5 °C in a light- and actin-dependent manner. This response required a lower intensity of blue light than that previously observed at moderate temperatures. Low temperature significantly reduced the maximum quantum efficiency of photosystem II and increased leaf ABA content in the light. Conversely, in the absence of blue light at low temperatures or under actin-inhibited conditions, mesophyll chloroplasts exhibited a doughnut-like arrangement, characterized by a distribution away from the bundle sheath side.
Conclusions
In finger millet, mesophyll chloroplasts move toward the bundle sheath through a blue light and actin-based mechanism at low temperatures. The doughnut-like arrangement appears to be a contingent phenomenon that manifests when the dispersion of mesophyll chloroplasts toward the bundle sheath is impeded.
General significance
The aggregative arrangement is a response to various environmental stresses, including low temperatures, and may be advantageous for finger millet seedlings in mitigating photoinhibition during cool mornings.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.