arterioscope.sim: Enabling Simulations of Blood Flow and Its Impact on Bioimpedance Signals.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Thomas Krispel, Vahid Badeli, Alireza Jafarinia, Alice Reinbacher-Köstinger, Christian Tronstad, Sascha Ranftl, Ørjan Grottem Martinsen, Håvard Kalvoy, Jonny Hisdal, Manfred Kaltenbacher, Thomas Hochrainer
{"title":"arterioscope.sim: Enabling Simulations of Blood Flow and Its Impact on Bioimpedance Signals.","authors":"Thomas Krispel, Vahid Badeli, Alireza Jafarinia, Alice Reinbacher-Köstinger, Christian Tronstad, Sascha Ranftl, Ørjan Grottem Martinsen, Håvard Kalvoy, Jonny Hisdal, Manfred Kaltenbacher, Thomas Hochrainer","doi":"10.3390/bioengineering11121273","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Early detection of cardiovascular diseases and their pre-existing conditions, arteriosclerosis and atherosclerosis, is crucial to increasing a patient's chance of survival. While imaging technologies and invasive procedures provide a reliable diagnosis, they carry high costs and risks for patients. This study aims to explore impedance plethysmography (IPG) as a non-invasive and affordable alternative for diagnosis.</p><p><strong>Methods: </strong>To address the current lack of large-scale, high-quality impedance data, we introduce arterioscope.sim, a simulation platform that models arterial blood flow and computes the electrical conductivity of blood. The platform simulates bioimpedance measurements on specific body segments using patient-specific parameters. The study investigates how introducing arterial diseases into the simulation affects the bioimpedance signals.</p><p><strong>Results: </strong>The simulation results demonstrate that introducing atherosclerosis and arteriosclerosis leads to significant changes in the computed signals compared to simulations of healthy arteries. Furthermore, simulation of a patient-specific healthy artery strongly correlates with measured signals from a healthy volunteer.</p><p><strong>Conclusions and significance: </strong>arterioscope.sim effectively simulates bioimpedance signals in healthy and diseased arteries and highlights the potential of using these signals for early diagnosis of arterial diseases, offering a non-invasive and cost-effective alternative to traditional diagnostic methods.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673255/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121273","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Early detection of cardiovascular diseases and their pre-existing conditions, arteriosclerosis and atherosclerosis, is crucial to increasing a patient's chance of survival. While imaging technologies and invasive procedures provide a reliable diagnosis, they carry high costs and risks for patients. This study aims to explore impedance plethysmography (IPG) as a non-invasive and affordable alternative for diagnosis.

Methods: To address the current lack of large-scale, high-quality impedance data, we introduce arterioscope.sim, a simulation platform that models arterial blood flow and computes the electrical conductivity of blood. The platform simulates bioimpedance measurements on specific body segments using patient-specific parameters. The study investigates how introducing arterial diseases into the simulation affects the bioimpedance signals.

Results: The simulation results demonstrate that introducing atherosclerosis and arteriosclerosis leads to significant changes in the computed signals compared to simulations of healthy arteries. Furthermore, simulation of a patient-specific healthy artery strongly correlates with measured signals from a healthy volunteer.

Conclusions and significance: arterioscope.sim effectively simulates bioimpedance signals in healthy and diseased arteries and highlights the potential of using these signals for early diagnosis of arterial diseases, offering a non-invasive and cost-effective alternative to traditional diagnostic methods.

arterioscope。模拟血液流动及其对生物阻抗信号的影响。
目的:早期发现心血管疾病及其既往疾病(动脉硬化和动脉粥样硬化)对增加患者的生存机会至关重要。虽然成像技术和侵入性手术提供了可靠的诊断,但它们对患者来说成本和风险都很高。本研究旨在探讨阻抗容积描记(IPG)作为一种非侵入性和负担得起的诊断替代方法。方法:为了解决目前缺乏大规模、高质量阻抗数据的问题,我们引入了动脉镜。Sim,一个模拟动脉血流并计算血液电导率的模拟平台。该平台使用患者特定参数模拟特定身体部位的生物阻抗测量。研究了在模拟中引入动脉疾病对生物阻抗信号的影响。结果:模拟结果表明,与健康动脉的模拟相比,引入动脉粥样硬化和动脉硬化导致计算信号发生显著变化。此外,患者特定健康动脉的模拟与健康志愿者的测量信号密切相关。结论及意义:动脉镜。Sim有效地模拟了健康和病变动脉中的生物阻抗信号,并强调了使用这些信号进行动脉疾病早期诊断的潜力,为传统诊断方法提供了一种非侵入性和成本效益高的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信