Predicting the Impact of Polysulfone Dialyzers and Binder Dialysate Flow Rate on Bilirubin Removal.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Alexander Novokhodko, Nanye Du, Shaohang Hao, Ziyuan Wang, Zhiquan Shu, Suhail Ahmad, Dayong Gao
{"title":"Predicting the Impact of Polysulfone Dialyzers and Binder Dialysate Flow Rate on Bilirubin Removal.","authors":"Alexander Novokhodko, Nanye Du, Shaohang Hao, Ziyuan Wang, Zhiquan Shu, Suhail Ahmad, Dayong Gao","doi":"10.3390/bioengineering11121262","DOIUrl":null,"url":null,"abstract":"<p><p>Liver failure is the 12th leading cause of death worldwide. Protein-bound toxins such as bilirubin are responsible for many complications of the disease. Binder dialysis systems use albumin or another binding molecule in dialysate and detoxifying sorbent columns to remove these toxins. Systems like the molecular adsorbent recirculating system and BioLogic-DT have existed since the 1990s, but survival benefits in randomized controlled trials have not been consistent. New binder dialysis systems, including open albumin dialysis and the Advanced Multi-Organ Replacement system, are being developed. Optimal conditions for binder dialysis have not been established. We developed and validated a computational model of bound solute dialysis. It predicted the impact of changing between two test setups using different polysulfone dialyzers (F3 and F6HPS). We then predicted the impact of varying the dialysate flow rate on toxin removal. We found that bilirubin removal declines with dialysate flow rate. This can be explained through a linear decline in free bilirubin membrane permeability. Our model quantifies this decline through a single parameter (polysulfone dialyzers). Validation for additional dialyzers and flow rates will be needed. This model will benefit clinical trials by predicting optimal dialyzer and flow rate conditions. Accounting for toxin adsorption onto the dialyzer membrane may improve results further.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673171/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121262","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Liver failure is the 12th leading cause of death worldwide. Protein-bound toxins such as bilirubin are responsible for many complications of the disease. Binder dialysis systems use albumin or another binding molecule in dialysate and detoxifying sorbent columns to remove these toxins. Systems like the molecular adsorbent recirculating system and BioLogic-DT have existed since the 1990s, but survival benefits in randomized controlled trials have not been consistent. New binder dialysis systems, including open albumin dialysis and the Advanced Multi-Organ Replacement system, are being developed. Optimal conditions for binder dialysis have not been established. We developed and validated a computational model of bound solute dialysis. It predicted the impact of changing between two test setups using different polysulfone dialyzers (F3 and F6HPS). We then predicted the impact of varying the dialysate flow rate on toxin removal. We found that bilirubin removal declines with dialysate flow rate. This can be explained through a linear decline in free bilirubin membrane permeability. Our model quantifies this decline through a single parameter (polysulfone dialyzers). Validation for additional dialyzers and flow rates will be needed. This model will benefit clinical trials by predicting optimal dialyzer and flow rate conditions. Accounting for toxin adsorption onto the dialyzer membrane may improve results further.

预测聚砜透析器和结合剂透析液流速对胆红素去除的影响。
肝功能衰竭是全球第12大死因。胆红素等蛋白质结合毒素是该病许多并发症的原因。结合剂透析系统使用白蛋白或其他结合分子在透析液和解毒吸附柱去除这些毒素。自20世纪90年代以来,分子吸附剂再循环系统和BioLogic-DT等系统已经存在,但随机对照试验的生存效益并不一致。新的结合剂透析系统,包括开放式白蛋白透析和先进的多器官替代系统,正在开发中。粘结剂透析的最佳条件尚未确定。我们开发并验证了结合溶质透析的计算模型。它预测了使用不同聚砜透析器(F3和F6HPS)的两种测试设置之间变化的影响。然后我们预测了不同透析液流速对毒素去除的影响。我们发现胆红素去除率随透析液流速而下降。这可以通过游离胆红素膜通透性的线性下降来解释。我们的模型通过单一参数(聚砜透析器)来量化这种下降。需要验证额外的透析器和流速。该模型通过预测最佳的透析器和流速条件将有利于临床试验。考虑毒素在透析器膜上的吸附可以进一步改善结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信