Hafsa Abduljalil, Om Alkhir Alshanta, Safa Chougule, Mark Butcher, Bryn Short, William McLean, Neil Parry, Joanne O'Keeffe, Gordon Ramage
{"title":"Lactams Exhibit Potent Antifungal Activity Against Monospecies and Multispecies Interkingdom Biofilms on a Novel Hydrogel Skin Model.","authors":"Hafsa Abduljalil, Om Alkhir Alshanta, Safa Chougule, Mark Butcher, Bryn Short, William McLean, Neil Parry, Joanne O'Keeffe, Gordon Ramage","doi":"10.1111/apm.13510","DOIUrl":null,"url":null,"abstract":"<p><p>Infections of intact and damaged skin barriers and keratin are frequently associated with complex biofilm communities containing bacteria and fungi, yet there are limited options for successful management. This study intended to focus on the utility of some novel proprietary lactam molecules, quorum sensing (QS)-derived halogenated furanones, which act to block the QS pathway, against key fungal pathogens of the skin (Candida albicans, Malassezia furfur and Microsporum gypseum). Moreover, we aimed to assess how these actives performed against complex interkingdom biofilms in a clinically relevant model. Two lactam derivatives were tested against a panel of important fungal pathogens and then quantitatively assessed against simple and increasingly complex interkingdom biofilm models on polystyrene coverslips and a novel keratin hydrogel system. The lactams were shown to be effective against a wide range of fungal species in the planktonic and biofilm forms, with no ability to regrow. The fungal component of the multispecies biofilm models was significantly reduced with lactam treatment. Lactam treatment was also comparably effective compared to the non-prescription topical antifungal 'Lamisil' against C. albicans early and late biofilms. This study highlights the effectiveness of lactams as a novel antimicrobial for the management of the polymicrobial and interkingdom multispecies biofilms.</p>","PeriodicalId":8167,"journal":{"name":"Apmis","volume":"133 1","pages":"e13510"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718591/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apmis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/apm.13510","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Infections of intact and damaged skin barriers and keratin are frequently associated with complex biofilm communities containing bacteria and fungi, yet there are limited options for successful management. This study intended to focus on the utility of some novel proprietary lactam molecules, quorum sensing (QS)-derived halogenated furanones, which act to block the QS pathway, against key fungal pathogens of the skin (Candida albicans, Malassezia furfur and Microsporum gypseum). Moreover, we aimed to assess how these actives performed against complex interkingdom biofilms in a clinically relevant model. Two lactam derivatives were tested against a panel of important fungal pathogens and then quantitatively assessed against simple and increasingly complex interkingdom biofilm models on polystyrene coverslips and a novel keratin hydrogel system. The lactams were shown to be effective against a wide range of fungal species in the planktonic and biofilm forms, with no ability to regrow. The fungal component of the multispecies biofilm models was significantly reduced with lactam treatment. Lactam treatment was also comparably effective compared to the non-prescription topical antifungal 'Lamisil' against C. albicans early and late biofilms. This study highlights the effectiveness of lactams as a novel antimicrobial for the management of the polymicrobial and interkingdom multispecies biofilms.
期刊介绍:
APMIS, formerly Acta Pathologica, Microbiologica et Immunologica Scandinavica, has been published since 1924 by the Scandinavian Societies for Medical Microbiology and Pathology as a non-profit-making scientific journal.