{"title":"Personalized Game-Based Content and Performance: A Pilot Study on a Digital Intervention for Children with ADHD.","authors":"Seon-Chil Kim, Jeong-Heon Song, Na-Yeong Kong","doi":"10.3390/bioengineering11121277","DOIUrl":null,"url":null,"abstract":"<p><p>Mobile-based digital interventions for children with attention-deficit hyperactivity disorder (ADHD) have been developed to alleviate their symptoms. When developing mobile game-based digital interventions for ADHD treatment, it is important to research how the emotional responses of the target audience members-based on flashy visuals or difficulty adjustments to motivate the user-affect their content manipulation ability. This study performed a correlation analysis to examine the impact of perceived difficulty and enjoyment (interest) on the performance of children diagnosed with ADHD while engaging in game-based digital content. Statistically significant differences were observed in the following variables based on the enjoyment level: correct rate (<i>p</i> = 0.0040), decision time (<i>p</i> = 0.0302), difficulty (<i>p</i> < 0.0001), and touch time (<i>p</i> = 0.0249). Considering difficulty level, statistically significant differences were observed for correct rate (<i>p</i> = 0.0011), decision time (<i>p</i> = 0.0158), and difficulty (<i>p</i> < 0.0001). Correlation analysis between the variables correct rate, decision time, difficulty, touch, time limit, and touch time based on enjoyment and difficulty did not reveal significant correlations. Therefore, for children with ADHD, digital interventions should focus on the therapeutic goals rather than on flashy visuals or difficulty adjustments aimed at enhancing interest. Based on these results, further research exploring how psychological states affect performance regarding digital content is necessary.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121277","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile-based digital interventions for children with attention-deficit hyperactivity disorder (ADHD) have been developed to alleviate their symptoms. When developing mobile game-based digital interventions for ADHD treatment, it is important to research how the emotional responses of the target audience members-based on flashy visuals or difficulty adjustments to motivate the user-affect their content manipulation ability. This study performed a correlation analysis to examine the impact of perceived difficulty and enjoyment (interest) on the performance of children diagnosed with ADHD while engaging in game-based digital content. Statistically significant differences were observed in the following variables based on the enjoyment level: correct rate (p = 0.0040), decision time (p = 0.0302), difficulty (p < 0.0001), and touch time (p = 0.0249). Considering difficulty level, statistically significant differences were observed for correct rate (p = 0.0011), decision time (p = 0.0158), and difficulty (p < 0.0001). Correlation analysis between the variables correct rate, decision time, difficulty, touch, time limit, and touch time based on enjoyment and difficulty did not reveal significant correlations. Therefore, for children with ADHD, digital interventions should focus on the therapeutic goals rather than on flashy visuals or difficulty adjustments aimed at enhancing interest. Based on these results, further research exploring how psychological states affect performance regarding digital content is necessary.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering