Modulating vascular smooth muscle cell phenotype via Wnt-Independent FRZB pathways.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hyomin Kim, Eun Kyoung Kim, Yeuni Yu, Hye Jin Heo, Dokyoung Kim, Su-Yeon Cho, Yujin Kwon, Won Kyu Kim, Kihun Kim, Dai Sik Ko, Yun Hak Kim
{"title":"Modulating vascular smooth muscle cell phenotype via Wnt-Independent FRZB pathways.","authors":"Hyomin Kim, Eun Kyoung Kim, Yeuni Yu, Hye Jin Heo, Dokyoung Kim, Su-Yeon Cho, Yujin Kwon, Won Kyu Kim, Kihun Kim, Dai Sik Ko, Yun Hak Kim","doi":"10.1016/j.abb.2025.110290","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Vascular smooth muscle cells are pivotal in atherosclerosis, transitioning from a contractile to a synthetic phenotype, which is associated with increased proliferation and inflammation. FRZB, a Wnt signaling modulator, has been implicated in vascular pathology, but its specific role in vascular smooth muscle cell phenotype modulation is not well understood. This study investigates the role of FRZB in regulating vascular smooth muscle cell phenotypes.</p><p><strong>Methods: </strong>Vascular smooth muscle cell regions were categorized based on FRZB expression levels, and various analyses, including differential gene expression, KEGG pathway analysis, and Disease Ontology analysis, were conducted. FRZB knockdown in human aortic vascular smooth muscle cell was performed using siRNA, followed by assessments of cell migration, proliferation, and phenotype marker expression.</p><p><strong>Results: </strong>FRZB expression was significantly reduced in synthetic type compared to contractile type in both mouse models and human samples. FRZB knockdown in human vascular smooth muscle cells led to increased cell migration and proliferation, alongside decreased expression of contractile markers and increased synthetic markers. Unexpectedly, FRZB knockdown suppressed Wnt signaling. Pathway analysis revealed associations with the PI3K-Akt signaling pathway, focal adhesion, and ECM interactions.</p><p><strong>Conclusions: </strong>Our study highlights FRZB's role in Vascular smooth muscle cell phenotype modulation, showing that reduced FRZB expression correlates with a synthetic phenotype and increased disease markers. FRZB does not enhance Wnt signaling but may regulate vascular smooth muscle cell behavior through alternative pathways. These findings suggest FRZB as a potential therapeutic target for stabilizing vascular smooth muscle cells and managing atherosclerosis.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110290"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.abb.2025.110290","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims: Vascular smooth muscle cells are pivotal in atherosclerosis, transitioning from a contractile to a synthetic phenotype, which is associated with increased proliferation and inflammation. FRZB, a Wnt signaling modulator, has been implicated in vascular pathology, but its specific role in vascular smooth muscle cell phenotype modulation is not well understood. This study investigates the role of FRZB in regulating vascular smooth muscle cell phenotypes.

Methods: Vascular smooth muscle cell regions were categorized based on FRZB expression levels, and various analyses, including differential gene expression, KEGG pathway analysis, and Disease Ontology analysis, were conducted. FRZB knockdown in human aortic vascular smooth muscle cell was performed using siRNA, followed by assessments of cell migration, proliferation, and phenotype marker expression.

Results: FRZB expression was significantly reduced in synthetic type compared to contractile type in both mouse models and human samples. FRZB knockdown in human vascular smooth muscle cells led to increased cell migration and proliferation, alongside decreased expression of contractile markers and increased synthetic markers. Unexpectedly, FRZB knockdown suppressed Wnt signaling. Pathway analysis revealed associations with the PI3K-Akt signaling pathway, focal adhesion, and ECM interactions.

Conclusions: Our study highlights FRZB's role in Vascular smooth muscle cell phenotype modulation, showing that reduced FRZB expression correlates with a synthetic phenotype and increased disease markers. FRZB does not enhance Wnt signaling but may regulate vascular smooth muscle cell behavior through alternative pathways. These findings suggest FRZB as a potential therapeutic target for stabilizing vascular smooth muscle cells and managing atherosclerosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信