Human umbilical cord mesenchymal stem cell-derived exosomes combined with mouse nerve growth factor can more effectively ameliorate the motor disorder and brain pathological injury in mice with cerebral palsy.
{"title":"Human umbilical cord mesenchymal stem cell-derived exosomes combined with mouse nerve growth factor can more effectively ameliorate the motor disorder and brain pathological injury in mice with cerebral palsy.","authors":"Xingxing Chen, Yipa Sai, Weijing Cui, Xiaoxia Hu, Jing Liu, Xiaofeng Cao, Shili Wu","doi":"10.17219/acem/192773","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cerebral palsy (CP) is a neurodevelopmental disorder and motor disorder syndrome. It has been confirmed that mesenchymal stem cells (MSCs) and mouse nerve growth factor (mNGF) can repair brain tissue damage and nerve injury; however, exosomes derived from healthy cells may have a comparable therapeutic potential as the cells themselves.</p><p><strong>Objectives: </strong>The purpose of this study was to explore the improvement effect of human umbilical cord mesenchymal stem cell (hUC-MSCs)-derived exosomes on a CP model and determine whether there is a synergistic effect when combined with mNGF.</p><p><strong>Material and methods: </strong>Exosomes were isolated from hUC-MSCs and examined using transmission electron microscopy (TEM), particle size and western blot (WB). A total of 38 BALB/c mice (male, postnatal day 6 (PND6)) were randomly divided into 5 groups: sham group, CP group, CP-exo group, CP-mNGF group, and CP-exo-mNGF group. Hypoxic induction after unilateral common carotid artery ligation combined with lipopolysaccharide (LPS) infection was used to construct the CP model. Pathological damage to neuron tissue and synaptic structures in the hippocampus was confirmed using light microscopy after hematoxylin-eosin (H&E) staining and TEM, respectively. Survival of neurons was evaluated using Nissl staining. Western blot was applied to monitor PSD-95 and synaptophysin (SYN) protein levels.</p><p><strong>Results: </strong>This study indicated that exosomes released by hUC-MSCs ameliorated brain damage and synaptic structure destruction in CP mice induced by hypoxic ischemia and LPS infection. When combined with mNGF, there was more effective improvement. In the CP group, neuronal function was severely impaired; however, hUC-MSCs-derived exosomes and mNGF improved it. PSD-95 and SYN proteins were presynaptic and postsynaptic proteins, respectively. Interestingly, the PSD-95 and SYN protein levels were significantly lower in the CP mice, but with the addition of hUC-MSCs-exosomes or mNGF, they increased significantly, especially in the CP-exo-mNGF group.</p><p><strong>Conclusions: </strong>The nerve function injury in CP can be improved the most when hUC-MSCs-derived exosomes are combined with mNGF through intraperitoneal (ip.) administration.</p>","PeriodicalId":7306,"journal":{"name":"Advances in Clinical and Experimental Medicine","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Clinical and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.17219/acem/192773","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cerebral palsy (CP) is a neurodevelopmental disorder and motor disorder syndrome. It has been confirmed that mesenchymal stem cells (MSCs) and mouse nerve growth factor (mNGF) can repair brain tissue damage and nerve injury; however, exosomes derived from healthy cells may have a comparable therapeutic potential as the cells themselves.
Objectives: The purpose of this study was to explore the improvement effect of human umbilical cord mesenchymal stem cell (hUC-MSCs)-derived exosomes on a CP model and determine whether there is a synergistic effect when combined with mNGF.
Material and methods: Exosomes were isolated from hUC-MSCs and examined using transmission electron microscopy (TEM), particle size and western blot (WB). A total of 38 BALB/c mice (male, postnatal day 6 (PND6)) were randomly divided into 5 groups: sham group, CP group, CP-exo group, CP-mNGF group, and CP-exo-mNGF group. Hypoxic induction after unilateral common carotid artery ligation combined with lipopolysaccharide (LPS) infection was used to construct the CP model. Pathological damage to neuron tissue and synaptic structures in the hippocampus was confirmed using light microscopy after hematoxylin-eosin (H&E) staining and TEM, respectively. Survival of neurons was evaluated using Nissl staining. Western blot was applied to monitor PSD-95 and synaptophysin (SYN) protein levels.
Results: This study indicated that exosomes released by hUC-MSCs ameliorated brain damage and synaptic structure destruction in CP mice induced by hypoxic ischemia and LPS infection. When combined with mNGF, there was more effective improvement. In the CP group, neuronal function was severely impaired; however, hUC-MSCs-derived exosomes and mNGF improved it. PSD-95 and SYN proteins were presynaptic and postsynaptic proteins, respectively. Interestingly, the PSD-95 and SYN protein levels were significantly lower in the CP mice, but with the addition of hUC-MSCs-exosomes or mNGF, they increased significantly, especially in the CP-exo-mNGF group.
Conclusions: The nerve function injury in CP can be improved the most when hUC-MSCs-derived exosomes are combined with mNGF through intraperitoneal (ip.) administration.
期刊介绍:
Advances in Clinical and Experimental Medicine has been published by the Wroclaw Medical University since 1992. Establishing the medical journal was the idea of Prof. Bogumił Halawa, Chair of the Department of Cardiology, and was fully supported by the Rector of Wroclaw Medical University, Prof. Zbigniew Knapik. Prof. Halawa was also the first editor-in-chief, between 1992-1997. The journal, then entitled "Postępy Medycyny Klinicznej i Doświadczalnej", appeared quarterly.
Prof. Leszek Paradowski was editor-in-chief from 1997-1999. In 1998 he initiated alterations in the profile and cover design of the journal which were accepted by the Editorial Board. The title was changed to Advances in Clinical and Experimental Medicine. Articles in English were welcomed. A number of outstanding representatives of medical science from Poland and abroad were invited to participate in the newly established International Editorial Staff.
Prof. Antonina Harłozińska-Szmyrka was editor-in-chief in years 2000-2005, in years 2006-2007 once again prof. Leszek Paradowski and prof. Maria Podolak-Dawidziak was editor-in-chief in years 2008-2016. Since 2017 the editor-in chief is prof. Maciej Bagłaj.
Since July 2005, original papers have been published only in English. Case reports are no longer accepted. The manuscripts are reviewed by two independent reviewers and a statistical reviewer, and English texts are proofread by a native speaker.
The journal has been indexed in several databases: Scopus, Ulrich’sTM International Periodicals Directory, Index Copernicus and since 2007 in Thomson Reuters databases: Science Citation Index Expanded i Journal Citation Reports/Science Edition.
In 2010 the journal obtained Impact Factor which is now 1.179 pts. Articles published in the journal are worth 15 points among Polish journals according to the Polish Committee for Scientific Research and 169.43 points according to the Index Copernicus.
Since November 7, 2012, Advances in Clinical and Experimental Medicine has been indexed and included in National Library of Medicine’s MEDLINE database. English abstracts printed in the journal are included and searchable using PubMed http://www.ncbi.nlm.nih.gov/pubmed.