Yi Gu , Shuhang Li , Ji Qi , Bangzheng Fu , Renzhi Tang , Lifeng Yang , Sen Tian , Zhihao Jiang
{"title":"A cognitive digital twin approach to improving driver compliance and accident prevention","authors":"Yi Gu , Shuhang Li , Ji Qi , Bangzheng Fu , Renzhi Tang , Lifeng Yang , Sen Tian , Zhihao Jiang","doi":"10.1016/j.aap.2024.107913","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced Driver Assistance Systems (ADAS) are crucial for enhancing driving safety by alerting drivers to unrecognized risks. However, traditional ADAS often fail to account for individual decision-making processes, including drivers’ perceptions of the environment and personal driving styles, which can lead to non-compliance with the provided assistance. This paper introduces a novel Cognitive-Digital-Twin-based Driving Assistance System (CDAS), leveraging a personalized driving decision model that dynamically updates based on the driver’s control and observation actions. By incorporating these individual behaviors, CDAS can tailor its assistance options to predict and adapt to the driver’s responses across various scenarios, ensuring both the necessity and safety of its interventions. Through two comprehensive experimental validations, we demonstrate that the cognitive digital twin (CDT) closely aligns with actual driver observation behaviors. By incorporating additional driver observation actions – an input not readily leveraged by data-driven methods without large annotated datasets – the CDT also achieves superior lane-changing predictions compared to deep learning classifiers relying solely on environmental states. Furthermore, CDAS significantly outperforms traditional ADAS in terms of risk reduction and user acceptance, showcasing its potential to enhance driving safety and adaptability effectively. These findings suggest that CDAS represents a substantial advancement towards more personalized and effective driving assistance.</div></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"Article 107913"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457524004585","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced Driver Assistance Systems (ADAS) are crucial for enhancing driving safety by alerting drivers to unrecognized risks. However, traditional ADAS often fail to account for individual decision-making processes, including drivers’ perceptions of the environment and personal driving styles, which can lead to non-compliance with the provided assistance. This paper introduces a novel Cognitive-Digital-Twin-based Driving Assistance System (CDAS), leveraging a personalized driving decision model that dynamically updates based on the driver’s control and observation actions. By incorporating these individual behaviors, CDAS can tailor its assistance options to predict and adapt to the driver’s responses across various scenarios, ensuring both the necessity and safety of its interventions. Through two comprehensive experimental validations, we demonstrate that the cognitive digital twin (CDT) closely aligns with actual driver observation behaviors. By incorporating additional driver observation actions – an input not readily leveraged by data-driven methods without large annotated datasets – the CDT also achieves superior lane-changing predictions compared to deep learning classifiers relying solely on environmental states. Furthermore, CDAS significantly outperforms traditional ADAS in terms of risk reduction and user acceptance, showcasing its potential to enhance driving safety and adaptability effectively. These findings suggest that CDAS represents a substantial advancement towards more personalized and effective driving assistance.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.