J John Benitto, J Judith Vijaya, Thenmozhli Geetha Saravanan, Radhakrishnan Manikkam, Bhavesh H Budhi
{"title":"Microwave-synthesized NiZrO<sub>3</sub>@GNP and NiZrO3@MWCNT nanocomposites: enhanced antimicrobial efficacy against biofilms and <i>Mycobacterium smegmatis</i>.","authors":"J John Benitto, J Judith Vijaya, Thenmozhli Geetha Saravanan, Radhakrishnan Manikkam, Bhavesh H Budhi","doi":"10.1007/s13205-024-04201-5","DOIUrl":null,"url":null,"abstract":"<p><p>The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek (<i>Trigonella foenum-graecum</i>) seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties. The antimicrobial and antibiofilm efficacy was evaluated against drug-resistant strains, including <i>Escherichia coli</i> and <i>Klebsiella pneumoniae</i>, by well diffusion method and crystal violet-Microtitre plate (CV-MtP) method. Notably, the NiZrO₃@MWCNT composite exhibited a maximum antibacterial inhibition zone of 13 mm and showed superior biofilm inhibition of 92.8% against K. pneumoniae at 500 ppm. In contrast, NiZrO₃@GNP demonstrated a biofilm inhibition of 97% at 500 ppm. Furthermore, the microplate Alamar Blue assay (MABA) was employed to determine the minimum inhibitory concentration (MIC) against <i>Mycobacterium smegmatis</i> (MTS) with NiZrO₃@MWCNT achieving 96% inhibition and at 500 ppm. These results confirm the enhanced antimicrobial efficacy of the carbon-integrated nanocomposites over pure NiZrO₃, which showed limited activity. This research underscores the promise of NiZrO₃-based nanocomposites as advanced antimicrobial agents, offering a novel strategy to combat the global health threat of antibiotic resistance.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04201-5.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 2","pages":"35"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707131/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04201-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek (Trigonella foenum-graecum) seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties. The antimicrobial and antibiofilm efficacy was evaluated against drug-resistant strains, including Escherichia coli and Klebsiella pneumoniae, by well diffusion method and crystal violet-Microtitre plate (CV-MtP) method. Notably, the NiZrO₃@MWCNT composite exhibited a maximum antibacterial inhibition zone of 13 mm and showed superior biofilm inhibition of 92.8% against K. pneumoniae at 500 ppm. In contrast, NiZrO₃@GNP demonstrated a biofilm inhibition of 97% at 500 ppm. Furthermore, the microplate Alamar Blue assay (MABA) was employed to determine the minimum inhibitory concentration (MIC) against Mycobacterium smegmatis (MTS) with NiZrO₃@MWCNT achieving 96% inhibition and at 500 ppm. These results confirm the enhanced antimicrobial efficacy of the carbon-integrated nanocomposites over pure NiZrO₃, which showed limited activity. This research underscores the promise of NiZrO₃-based nanocomposites as advanced antimicrobial agents, offering a novel strategy to combat the global health threat of antibiotic resistance.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04201-5.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.