Panagiota Batsaki, Sotirios P Fortis, Angelos D Gritzapis, Andriana Razou, Athanasios C Sakellaridis, Elisavet Grouzi, Dimitra Moschandreou, Michael I Koukourakis, Vassilios Zoumpourlis, Constantin N Baxevanis, Maria Goulielmaki
{"title":"Identification of a Novel Immune-Gene Signature with Prognostic Value in Patients with Head and Neck Cancer: A Pilot Study.","authors":"Panagiota Batsaki, Sotirios P Fortis, Angelos D Gritzapis, Andriana Razou, Athanasios C Sakellaridis, Elisavet Grouzi, Dimitra Moschandreou, Michael I Koukourakis, Vassilios Zoumpourlis, Constantin N Baxevanis, Maria Goulielmaki","doi":"10.1007/s10528-024-11017-8","DOIUrl":null,"url":null,"abstract":"<p><p>The tumor microenvironment has a significant input on prognosis and also for predicting clinical outcomes in various types of cancers. However, tumor tissue is not always available, thus, rendering peripheral blood a preferable alternative in the search for prognostic and predictive gene signatures. Head and neck squamous cell carcinoma (HNSCC) constitutes a quite heterogeneous disease characterized by poor prognosis. Therefore, the discovery of novel therapeutics based on prognostic gene signatures for effective disease governance is of paramount importance. In this study, we report for the first time an immune-gene signature identified in the peripheral blood of HNSCC patients comprising five genes (CLEC4C, IL23A, LCK, LY9, and CD19) which were more than threefold downregulated as compared to healthy individuals and were associated with poor prognosis. By performing analyses of HNSCC tumor samples from The Cancer Genome Atlas (TCGA) database, we discovered that decreased expression of these genes, both as single genes and as a 5-gene signature (5-GS), was significantly correlated with worse overall survival (OS). Our data show that the levels of expression of the 5-GS represent an immune profile predicting OS in patients with HNSCC.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-11017-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The tumor microenvironment has a significant input on prognosis and also for predicting clinical outcomes in various types of cancers. However, tumor tissue is not always available, thus, rendering peripheral blood a preferable alternative in the search for prognostic and predictive gene signatures. Head and neck squamous cell carcinoma (HNSCC) constitutes a quite heterogeneous disease characterized by poor prognosis. Therefore, the discovery of novel therapeutics based on prognostic gene signatures for effective disease governance is of paramount importance. In this study, we report for the first time an immune-gene signature identified in the peripheral blood of HNSCC patients comprising five genes (CLEC4C, IL23A, LCK, LY9, and CD19) which were more than threefold downregulated as compared to healthy individuals and were associated with poor prognosis. By performing analyses of HNSCC tumor samples from The Cancer Genome Atlas (TCGA) database, we discovered that decreased expression of these genes, both as single genes and as a 5-gene signature (5-GS), was significantly correlated with worse overall survival (OS). Our data show that the levels of expression of the 5-GS represent an immune profile predicting OS in patients with HNSCC.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.