Removal of Ampicillin with Nitrifying Cultures in a SBR Reactor.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Daniel Maturano-Carrera, Omar Oltehua-López, Flor de María Cuervo-López, Anne-Claire Texier
{"title":"Removal of Ampicillin with Nitrifying Cultures in a SBR Reactor.","authors":"Daniel Maturano-Carrera, Omar Oltehua-López, Flor de María Cuervo-López, Anne-Claire Texier","doi":"10.1007/s12010-024-05165-1","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of antibiotics in wastewater discharges significantly affects the environment, mainly due to the generation of bacterial populations with multiple antibiotic resistances. The cometabolic capacity of nitrifying sludge to simultaneously remove ammonium (NH<sub>4</sub><sup>+</sup>) and emerging organic contaminants (EOCs), including antibiotics, has been reported. In the present study, the removal capacity of 50 mg ampicillin (AMP)/L by nitrifying cultures associated with biosorption and biotransformation processes was evaluated in a sequencing batch reactor (SBR) system. The contribution of nitrifying enzymes (ammonium monooxygenase (AMO) and nitrite oxidoreductase (NOR)) and β-lactamases in AMP biodegradation was evaluated using specific inhibitors in batch cultures. AMP was 100% eliminated after 5 h since the first cycle of operation. The sludge maintained its ammonium oxidizing capacity with the total consumption of 102.0 ± 2.5 mg NH<sub>4</sub><sup>+</sup>-N/L in 9 h, however, the addition of AMP altered the nitrite-oxidizing process of nitrification, recovering 30 cycles later at both physiological and kinetic level. The kinetic activity of the nitrifying sludge improved along the operating cycles for both AMP removal and nitrification processes. The elimination of 24% AMP was attributed to the biosorption process and 76% to biotransformation, wherein the AMO enzyme contributed 95% to its biodegradation. Finally, the repeated exposure of the sludge to AMP for 72 operating cycles (36 days) was not sufficient to detect β-lactamase activity. The cometabolic ability of ammonium-oxidizing bacteria for biodegrading AMP could be employed for bioremediation of wastewater.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05165-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of antibiotics in wastewater discharges significantly affects the environment, mainly due to the generation of bacterial populations with multiple antibiotic resistances. The cometabolic capacity of nitrifying sludge to simultaneously remove ammonium (NH4+) and emerging organic contaminants (EOCs), including antibiotics, has been reported. In the present study, the removal capacity of 50 mg ampicillin (AMP)/L by nitrifying cultures associated with biosorption and biotransformation processes was evaluated in a sequencing batch reactor (SBR) system. The contribution of nitrifying enzymes (ammonium monooxygenase (AMO) and nitrite oxidoreductase (NOR)) and β-lactamases in AMP biodegradation was evaluated using specific inhibitors in batch cultures. AMP was 100% eliminated after 5 h since the first cycle of operation. The sludge maintained its ammonium oxidizing capacity with the total consumption of 102.0 ± 2.5 mg NH4+-N/L in 9 h, however, the addition of AMP altered the nitrite-oxidizing process of nitrification, recovering 30 cycles later at both physiological and kinetic level. The kinetic activity of the nitrifying sludge improved along the operating cycles for both AMP removal and nitrification processes. The elimination of 24% AMP was attributed to the biosorption process and 76% to biotransformation, wherein the AMO enzyme contributed 95% to its biodegradation. Finally, the repeated exposure of the sludge to AMP for 72 operating cycles (36 days) was not sufficient to detect β-lactamase activity. The cometabolic ability of ammonium-oxidizing bacteria for biodegrading AMP could be employed for bioremediation of wastewater.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信